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blocks for  complex structures. Many protein-based machines and materials 
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how proteins function, by studying the behavior of simple model proteins. 
We show how by artificially evolving their amino acids sequence,  it is possible 
to control their behavior.

Cover : Artistic superimposition of the X-Ray structure of the GroEL/GroES complex with 
 the cage structure used to model such a system in computer simulations



Writing with amino acids: designing the
folding and binding of model proteins



Writing with amino acids: designing the
folding and binding of model proteins

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit
van Amsterdam op gezag van de Rector Magnificus
prof. mr. P. F. van der Heijden ten overstaan van een
door het college voor promoties ingestelde commissie,
in het openbaar te verdedigen in de Aula der Universiteit

op donderdag 23 juni 2005, te 11:00 uur.

door

Ivan Coluzza

geboren te Rome, Italië



Promotor: prof. dr. D. Frenkel

Co-promotoren: prof. dr. H.G. Muller

Faculteit: Natuurwetenschappen, Wiskunde en Informatica

The work described in this thesis was performed at the FOM Institute for Atomic and Molecular
Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands. The work is part of the research
program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) and was made possible by
financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).



A Bea
Alla mia famiglia



The work in this thesis covers the following pubblications

Chapter 3:
Virtual-move Parallel Tempering
(Accepted for publication in ChemPhysChem)
Coluzza I, Frenkel D

Chapter 4:
Designing refoldable model molecules,
(Phys. Rev. E 68 (4): Art. No. 046703 Part 2 OCT 2003)
Coluzza I, Muller HG, Frenkel D

Chapter 5:
Designing specificity of protein-substrate interactions
(Phys. Rev. E 70 (50): Art. No. 051917 Nov 2004)
Coluzza I, Frenkel D

Chapter 6:
Refoldable proteins and substrate interaction
(In preparation)
Coluzza I, Frenkel D

Chapter 7:
Translocation boosts efficiency of double-barreled chaperonins
(In preparation)
Coluzza I, Frenkel D



Contents

1 Introduction 1

2 Artificial Evolution of a Lattice Heteropolymer 5
2.1 General properties of heteropolymers on a lattice . . . . . . . . . . . . . . . 5
2.2 Folding and Freezing Transition . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Design algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Free Energy Calculations 14
3.1 VMPT Virtual-move Parallel Tempering . . . . . . . . . . . . . . . . . . . . 17

4 Design Refoldable Molecules 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Design of a switchable polymer . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Free energy Calculations . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evolution of Protein Protein interaction 36
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Design the binding scenarios . . . . . . . . . . . . . . . . . . . . . . 39
5.3.2 Free energy calculations . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Refoldable proteins and substrate interaction 48
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Free energy calculations . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Simple model for chaperon action 61
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 Design of the folding and of the cavity coating . . . . . . . . . . . . 65
7.2.2 Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6



Contents

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Summary 78

Bibliography 81

9 Samevatting 84

7



1 Introduction

Proteins are the ultimate nano-machines. Moreover, they provide the building blocks for com-
plex structures. Many protein-based machines and materials have evolved during the past 4
billion years. For instance proteins can assemble into complex structures that can reach macro-
scopic sizes. Examples of such structures are actin filaments (Fig. 1.1) and microtubules.
These protein-based structural units are responsible for the structure and elastic properties of
many cells. Proteins perform specific tasks with high selectivity. The aim of the present thesis
is to gain a better understanding of how proteins function, by studying the behavior of simple
model proteins.

Proteins are heteropolymers composed of 20 different types of amino acids. Different
proteins have different chain lengths. Depending on the amino-acid sequence, some proteins
can collapse to form a well-defined “native” conformation whilst others can not. This process
of forming a compact, native structure is called folding. Usually, proteins are only biologi-
cally active in their native state. The tasks that proteins perform are very diverse; they usually
involve the interaction with other proteins or other biomolecules, such as DNA. These inter-
actions are controlled by the same elements that encode for the native structure of the protein
itself. Structure and function are, as consequence, strongly correlated, and are directly depen-
dent on the sequence of amino acids along the protein chain. A better understanding of the
relation between sequence, structure and function, is crucial for the design of biomolecular
materials and molecular machines.

Another way to look at functional proteins is as information carriers. Proteins are an essen-
tial part of gene-regulatory networks that control the response of the cell to the environment. A
simple way to understand the function of regulatory networks is to picture the stimuli coming
from the world outside the cell membrane (e.g signaling proteins, changes in food concentra-
tions...) as data input in a computer program that will generate a different output, depending
on which conditions are satisfied. The code for the program and the design of the computer
hardware are written in the DNA. The role of the network is to transmit the signal and translate
it from a the chemical language to the expression of proteins that are coded for by the genetic
material. Once the signal reaches the DNA, the output is provided in the form of promotion
or repression of the expression of specific proteins that will then start a new cascade of re-
actions to translate back the answer from the genetic code to necessary chemical reactions.
This signal-processing property can be achieved only if each element is designed to interact
selectively with its molecular partners, otherwise the signal would generate “crosstalk” with
potentially deleterious consequences. It is important to remember that such selectivity was
designed through the evolution of the amino acids sequence of the protein. An example of the
gene-regulatory network of the E-Coli bacterium is shown in schematically in Fig. 1.2.

1



1 Introduction

Figure 1.1: One of the most famous example of self assembly in nature, the actin fil-
aments are long chain of the same repeating unit protein. This filaments
are the building blocks of the cytoskeleton of many cells, and together with
myosin is the most important components of muscular fibers in all animals [1]
(http://www.cgl.ucsf.edu/chimera/ImageGallery/entries/actin/actin.html).
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1 Introduction

Figure 1.2: Gene Regulatory Network (GRN) of TFs in E-coli. This figure illustrates the com-
plexity of the core of the GRN in E-coli, and gives a glimpse of the number of
interaction that are involved in a subset of physiological activities of one of the
simplest living organisms [2].
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1 Introduction

There are two ways to approach the modeling of the relation between sequences and func-
tion. One is to focus on the properties of specific proteins. Such an approach requires an
accurate, atomistic model of the protein and its surrounding medium. The other approach
focuses on the more general question how the heterogeneity of a heteropolymer can lead to
both folding and specific interactions. In such studies, one can use simpler (cheaper) models
to reproduce the specificity of proteins. The reason why we use a simplified model is that
the numerical study of conformational changes in proteins tends to be computationally very
demanding. The power of computers has only recently reached the level where it becomes
feasible to simulate the folding of a single, relatively short, protein. However, for a systematic
study of the relation between sequence and conformational change, it is necessary to explore
the properties of a great number of molecules with different amino-acid sequences. For such
studies, fully atomistic models are not an option. It should be stressed that a protein is not only
optimized to fold into a specific structure, or to undergo a specific conformational change (as
in a motor protein). Its is also designed to interact strongly with specific substrates but only
weakly, if at all, with all other molecules that it encounters as it diffuses through the cell.
Clearly these conditions increase the complexity of protein design.

In what follows, we will use lattice heteropolymers to represent the peptide chain. This
model is one of the simplest representation of a protein and has been extensively used for
the study of folding properties. In Chapter 2 we describe the methods that we developed to
artificially evolve the model protein to perform specific, elementary tasks. Once a protein has
been “designed” the next step is to study the conformational space of the protein to test if it
performs as designed. In Chapter 3 we describe the algorithm that we used to sample the free
energy landscape of the heteropolymer even in regions of high free energy. In Chapter 4, we
describe the application of our model to the study of conformational changes in proteins in-
duced by a chemical agent. We pay special attention to important role of thermal fluctuations
that allow the system to reach state at which the cost of the transition to one structure to the
other one is considerably reduced. In Chapter 5 we extend our design technique to include
specific binding properties between a protein and a substrate. We study the influence of such
substrates on the transition between two conformations and on the folding properties of ran-
dom domains of proteins (Chapter 6). The final step is the study of a particular class of protein
called chaperonins that act as folding catalyzers. We introduce a model for chaperonin action
that suggest that protein translocation is a key step by which chaperonins refold misfolded
proteins into their native state (Chapter 7).
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2 Artificial Evolution of a Lattice
Heteropolymer

The typical size of single-domain protein is of the order of 103atoms (see Fig. 2.1). This
number of atoms does not included the surrounding solvent that is, however, an essential
element of the protein activity. Upon inclusion of the first shell of water the number of atoms
increases by a factor ten .

Using the fastest computers available,it is now becoming possible to perform fully atom-
istic simulations of the folding of small proteins. However, as explained in the introduction,
our aim is different: we wish to explore the constraints placed upon protein design by the
requirements of foldability and function. For such studies it is advisable to use a highly sim-
plified protein model. In what follows, we describe proteins as heteropolymers “living” on a
3D cubic lattice.

2.1 General properties of heteropolymers on a lattice

This lattice-polymer model for proteins is highly simplified. First of all, the side chain of
the single amino acids are not taken into account, leaving the protein as necklace of beads
with isotropic interactions. The major effect of this approximation is to ignore the entropic
contribution of the side chain and to reduce the effect of steric hindrance. The second ap-
proximation consists in constraining the residues of the chain on a cubic lattice of unit side
length. Constraining a polymer to a lattice does not change the topology of the chain, but all
internal degrees of the monomeric units, as well as the vibrations of the bonds between them,
are ignored. The model assumes that there are only nearest-neighbor interactions between the
amino acids. The total configurational energy of a particular sequence in a given structure is
given by

E � ∑Ci jSi j � (2.1)

where i and j are particle indices, C is the contact map defined as

C � �
1 if i neighbor of j
0 otherwise � (2.2)

and S is the interaction matrix. For S we use the 20 by 20 matrix fitted by Miyazawa and
Jernigan [3]. From the PDB database these authors extracted the frequency of contacts for
each pair of amino acids in a wide range of different proteins. The formation of a bond in
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2 Artificial Evolution of a Lattice Heteropolymer

Figure 2.1: Hen egg white lysozyme is a single chain of 129 residues (~1000 atoms). It has
an alpha+beta fold, consisting of five to seven alpha helices and a three-stranded
antiparallel beta sheet. The enzyme is approximately ellipsoidal in shape, with a
large cleft in one side forming the active site. Lysozyme on of the better known
single domain proteins
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2 Artificial Evolution of a Lattice Heteropolymer

E
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E
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∆

S

Figure 2.2: Energy spectrum of a heteropolymer on a lattice given by Eq. 2.3. On the hori-
zontal axis is the configurational energy (Eq. 3.9), while on the vertical axis is the
entropy. EN is the energy of the native state, while Ec is the crossing point of the
parabola with the abscissa. ∆ the region of discrete states. The slope of the tangent
passing through EN defines the folding temperature, while the tangent in Ec gives
the glass temperature.

the collapsed polymer can be schematically represented by the following chemical reaction,�
σ ������� � π �����
	� �

σ � π ��� � �
����� where
�
σ ����� is the average binding energy between

an amino acids of type σ and all the other types of amino acids. Using the quasi-chemical
approximation Miyazawa and Jernigan estimated the free energy associated with the formation
of a bond between all possible pairs of amino acids. It should be stressed that it is not at
all obvious that the frequency of contacts between amino-acids is a direct reflection of their
binding strength. For one thing, it is obvious that the “training” set from which the interaction
energies were deduced is a subset (and probably not a random subset) of all existing protein
structures. Note that here and in the next chapters the energy is expressed in units of kT
relative to the energies in the interaction matrix.

A given lattice polymer can form a large number of compact conformations. Obviously,
every conformation is characterized by a different contact map. Hence, the energy of the
polymer depends on its conformation. In a mean field approximation the energy spectrum of
the compact structures of a random chain on a lattice has the shape shown in Fig. 2.2.

The mean field expression for the entropy is [4, 5, 6]

S
�
E � �

�
N lnγ � E2

2Nσ2
B

if E � Ec

0 if E � Ec

(2.3)

1 where N is the number of elements in the chain, σB is the standard deviation of the interaction
matrix, and γ is the coordination number for fully compact structures on the lattice. Ec is the

1In the definition of the entropy the contribution of the quantity � πσ2
B is ignored, as explained by Derrida [6]
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2 Artificial Evolution of a Lattice Heteropolymer

(lower) crossing point of the parabola with the abscissa, Ec
� � NσB

�
2lnγ � 1 � 2. The finite

width of this energy spectrum reflects the fact that the system is frustrated. The “native state”
corresponds to the least frustrated structure. If the native state is non-degenerate, this lowest-
energy conformation has zero entropy. The degree of frustration of a heteropolymer is linked
to the number of different monomers that it contains. This is particularly obvious in the case
of a homopolymer. For such molecules, all compact states are unfrustrated and have the same
energy. This picture is confirmed in our simulation, where indeed we observe a non-degenerate
native state for a well designed sequence. In the following we will refer to the lowest energy
state as the native state of the heteropolymer.

In 1993 Shaknovich and Gutin [7, 8, 9] showed that it is possible to “design” a lattice
protein in such a way that it will fold into a specific conformation. They achieved this by opti-
mizing the sequence of amino acids, using a Monte Carlo algorithm that randomly exchanges
amino acids within the chain molecule. The acceptance of such trial swaps depends on the
energy change associated with the move

∆E � ∑
�
S �i j � Si j � Ci j (2.4)

where S � (S) denotes the interaction matrix of the new (old) sequence of amino acids. During a
Monte Carlo run of several million cycles, a large number of distinct sequences are generated.
The sequence S � with the lowest energy is assumed to be the best candidate to fold into the
native state.

ENative
� ∑Ci jS �i j � (2.5)

A closely related, but different method, for the design of heteropolymers that fold into a
specific structure, is the so called “Painted globule” model (see, e.g. [13, 14]). The central idea
behind this approach is to look at the target structure, and then distinguish between surface and
core residues (hydrophilic and hydrophobic). The design consists of a sequence of folding and
re-painting steps.

In our work we have chosen to not use this last method, because it does not allow for a
complete control on the target configuration. The annealing process needs equilibration steps
of the configuration of the chain. In practice this means that the minimization procedure is
done on both the C and the S terms of the energy. To study designed configurational changes
in protein we found it crucial to have the target structure equal to the final native state of the
protein.

Pande et al. [10, 11, 12] have provided a theoretical analysis of the general design of
a foldable protein sequence. In particular, these authors showed that, in the context of the
Random Energy Model, the phase behavior of designed protein sequences can be predicted
analytically. One of the main findings of Pande et al. was that the energy gap separating the
target “native” state from the set of non-native compact states, is inversely proportional to the
design temperature (the fictitious temperature at which we perform Boltzmann sampling of
different sequences for a given target conformation). This a crucial result because it gives a
theoretical basis to the feasibility of heteropolymer design, and also because it fixes a thermo-
dynamic relation between the process of folding of a chain and the the design of its sequence
of monomers. In the next section we will give the derivation of such a fundamental result.

8



2 Artificial Evolution of a Lattice Heteropolymer

2.2 Folding and Freezing Transition

In this section we derive the relation between the freezing transition for heteropolymers with
random sequences and the folding transition of designed proteins. Although, the derivation
it is valid only in a mean-field approximation, the final result will give a clear and simple
physical explanation of what it means to design a protein.

In their 1997 review Pande et al. [11], presented a new approach to describe the statistical
mechanics of protein folding. The approach that we follow in subsequent chapters has been
inspired by the methods described in ref. [11].

Let us start by considering the total free energy of a random heteropolymer

F
�
T � ��� Fseq

�
T ��� � � T � lnZseq

�
T ��� (2.6)

where Fseq (Zseq) is the free energy (partition function) for a possible random sequence and
the average is done on all possible realizations. As we discussed above, the entropy in REM
(Eq. 2.3) vanishes for states with energy below Ec, while above it the average density of states�
n
�
E ��� is equal to M P

�
E � dE where M � γN is the number of states, dE in the thermodynamic

limit can be approximated by dE �
	 N 2, and P is the Gaussian density probability

P
�
E � � 1�

2πNσ2
B � 1 � 2

exp � � E2

2Nσ2
B � (2.7)

where σ2
B is the variance of the interaction matrix . We can then rewrite the partition function

in a simpler form by taking advantage of the exponential weight of states in the saddle point
E � of the density of state

Zseq
�
T � ��
 n

�
E � e � E � T dE ��
 M P

�
E � e � E � T dE � M P

�
E � � e � E � � T

where E � � � Nσ2
B � T as the value of the energy at which the argument inside the integral

is maximum for a Gaussian distribution 3. This representation is valid for temperatures for
which E � is located in the continuous part of the spectrum. In this regime, the partition func-
tion is independent of the particular sequence and in Eq. 2.6 we can swap the ordering of
taking the average and the logarithm. The main assumption of the REM is that each interac-
tion between the monomers is independent, and follows a Gaussian distribution. Using this
approximation we can compute the average of Z over the all possible sequences, as the product
of the contribution of each pair interaction:�

Z � � M � 
 P
�
Epair � e � Epair � T dEpair � L � M e

L � E � σ2
B

2T �
(2.8)

F � � T ln
�
Z � � L � E � σ2

B

2T � � T N lnγ � L � E � σ2
B

2T � 1 � T 2

T 2
g ��� � (2.9)

2The approximation for dE is an arbitrary power α of N, with α � 1 Ref. [6]
3Note that by taking the thermodynamic limit of the log of the density of states

lnγNP � E � dE � γNP � E ��� N � N  lnγ ! E2

2N2σ2
B " we recover the expression of the entropy in Eq. 2.3

9



2 Artificial Evolution of a Lattice Heteropolymer

where L is the (independent of the conformation) number of contacts between monomer in
any particular compact conformation, and E is the average of the interaction matrix. We
expressed the right-hand side as a function of the transition temperature Tg at which the entropy
S
�
T � � � dF

dT vanishes

Tg
� σB

L
2N lnγ

(2.10)

This temperature is called glass temperature because below it the system is trapped in one of
the conformations that belong to the discrete region of the density of states. We now have
the statistical tools to describe the phase behavior of a quenched random heteropolymer. The
reason why we sketch the derivation of Eq. 2.9 explicitly is that it illustrates the peculiar tem-
perature dependence of the system. Above the glass temperature Tg, the random-energy het-
eropolymer explores many states practically independent of the particular sequence of amino
acids. However, as the temperature is lowered, the equilibrium is dominated by few discrete
states of low energy, which are highly dependent on the particular sequence. The transition
at T � Tg is called the freezing transition [15, 16]. Initially it was suggested that the random-
energy model might provide a useful model for protein folding, as it yields a unique ground
state with a probability independent of the system size. However the energy differences be-
tween structurally distinct states in the discrete region of the energy spectrum are only of the
order of 	 N, which does not allow for a robust equilibrium state. The question is then if it
possible to design particular sequences that freeze into a robust ground state. In order for such
an approach to work, the energy of the target state must be well separated from the boundaries
of the continuous distribution of states, where the glassy states accumulate (at typical distances
of order 	 N). Using mean-field arguments similar to the ones used above, we can derive an
expression for the average energy of the designed state Ed as function of the temperature of
the canonical ensemble of sequences Td . We start by choosing a target conformation Cd as our
tentative native state. This conformation is characterized by an energy Ed

� H
�
Sd � Cd � that

obviously depends on the sequence Sd . The partition function obtained by summing over all
possible sequences is denoted by W and it defines a free energy FW through

FW � � Td lnW
�
Td � � � Td ln

� � exp � � H
�
Sd � Cd ��� � Td ���� � H � � 1 � 2Td � � H 2 � � � H � 2 �

� L � E � σ2
B

2Td � �
where Td denotes the design temperature. In terms of FW we can write an approximate expres-

sion for the average energy of the designed sequence
�
Ed � � � ∂ lnW

∂ 	 1 � T 
���� T 
 Td

, which does not

depend on the target conformation, but instead show that the energy is inversely proportional
to the design temperature �

Ed � � L � E � σ2
B

Td � � (2.11)

This result implies that if the design procedure is carried out at a temperature lower than Tg,
then the average energy of the designed state will be below the boundaries of the continuous

10



2 Artificial Evolution of a Lattice Heteropolymer

part of the density of states. The lower the design temperature, the larger the gap will be and,
as a consequence, the designed state will be increasingly robust. Furthermore the freezing
transition of sequences designed at low Td will occur at a temperature higher than Tg because
the energy of a designed sequence is lower that the one of the glassy states of a random
heteropolymer. The folding temperature Tf is defined as the temperature at which there is
equilibrium between the native (target) state and the random globule. T f can be computed by
comparing Eq. 2.11 with Eq. 2.9

1

T 2
f

� 1
T 2

g

� 2
Tf Td

(2.12)

which is independent of the mean value of the interaction matrix, but it does depend on the
variance σB (see Eq. 2.10). We expect that the rate at which a designed protein folds into the
native state is faster than the rate at which a completely random heteropolymer reaches its
lowest-energy state. The reason is that folding takes places at a temperature T f � Tg where
the system has enough thermal energy to overcome local energy barriers. Using the relation in
Eq. 2.12, we constructed a phase diagram that describes the general relation between design
and folding in heteropolymers (see Fig. 2.3).

2.3 Design algorithm

In the previous section I have presented a mean field analysis of the design process of het-
eropolymers. The results proved the validity of a general design scheme, that would simply
minimize the total energy of the polymer, with a fixed target compact configuration in a canon-
ical ensemble of sequences. If this minimization process was carried out at a temperature Td

low enough, than the final heteropolymer would have shown a folding behavior similar to
real proteins. I now will describe the technical details our implementation of the design al-
gorithm. In order to design monomer sequences that yield a target conformation, we used
a modified version of the Shakhnovich method. We perform point mutation of single amino
acids and swap of identity between two randomly chosen residues. Unlike the latter method,
our approach does not keep the amino acid composition of a chain fixed. Rather, we allow for
random changes of amino acids. As a consequence we had to devise a criteria more sophisti-
cated than the normal metropolis scheme to prevent that this compositional sampling results
in the formation of homopolymers of the most attractive amino acid. We introduce a (purely
fictitious) compositional “temperature”. Increasing the compositional temperature increases
the compositional entropy. To perform the sampling, we combine the following acceptance
criterion with the normal acceptance Metropolis rule

Pacc � min ���� 1 � � Nnew
P

Nold
P � Tp ���� �

where Tp is the arbitrary parameter that plays the role of a temperature, and NP is the number
of permutations that are possible for a given set of amino acids. NP is given by the multinomial
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2 Artificial Evolution of a Lattice Heteropolymer
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Figure 2.3: Phase diagram of the freezing transition in globular heteropolymers with a de-
signed sequence. We have indicated with on the y axis we plot the temperature T
of the system during the folding process, and on the x axis there is the tempera-
ture Tdof the design process. We can identify 3 phases: 1) a Glassy phase in the
region Td � Tg � 1 and T � Tg � 1, in which the protein is stuck in one of the low en-
ergy states in the discrete part of the energy spectrum of a random heteropolymer.
2) a Random phase for T � Tg � 1if Td � Tg � 1and T � Tf , where Tf is the folding
temperature and is calculated through Eq. 2.12 with the conditions Td � Tg � 1and
Tf � Tg � 1. This region is called Random because the system fluctuates between
the different conformation of the continuous part of the density of states, and it
correspond to the unfolded state of a design protein. 3) The last region is the
Folded phase where the target conformation dominates the equilibrium. The ther-
modynamic stability of this phase is directly dependent on how much the design
temperature Td is lower than the glass one Tg
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2 Artificial Evolution of a Lattice Heteropolymer

expression

Np
� N!

n1!n2!n3! � � � (2.13)

where N is the total number of monomers and n1 � n2 etc are the number of amino acids of type
1,2,. . . . With this condition we can explore a large set of sequences, yet avoid the formation
of homopolymers. In the absence of any a priori criterion to fix Tp, we used trial and error.
If Tp is too small, the chains will tend to become homopolymers (with a degenerate native
state). In contrast, when Tp is too large, we noticed that the lowest energy sequences were no
longer able to fold (the sequence becomes too random). We should therefore choose a value
of Tp that yields a compromise between these two conflicting tendencies. To explore a range
of values for Tp and at the same time limit the trapping in local minima of sequence space
we introduced a parallel tempering algorithm for the sequence sampling at different pseudo-
temperatures. We use the following criterion to decide whether the swapping of the sequences
between two adjacent temperatures would be accepted:

Pacc � min �� � 1 � � Nnew
P

Nold
P � ∆Tp � �� � (2.14)

In our simulations we found that good sequences could be designed if parallel tempering was
performed with the set of values Tp

��� 1 � 1 � 2 � � � � 1 � 14 � . With this set of compositional tem-
peratures we obtained native states that were both stable and non-degenerate. We stress that
the fictitious temperature parameter Tp only plays a role in the generation of suitable sequence.
It plays no role in the subsequent simulations of chain (re)folding. We used variations of the
above design algorithm for each individual problem that we studied. In every chapter we de-
scribe the modifications introduced and we explain the reasons for introducing the approach
used in that chapter. Of course, once we have generated a particular sequence (or two, as the
case may be), we still need to test whether these sequences do indeed fold into the desired
structures.

13



3 Free Energy Calculations

In the previous chapter we have introduced the model that we use to describe proteins. To
study the folding of a particular model protein, we use a Monte Carlo algorithm with three
basic moves: corner-flip, crankshaft, branch rotation. The corner-flip involves a rotation of
180 degrees of a given particle about the line joining its neighbors along the chain. The
crankshaft move, is a rotation by 90 degrees of two consecutive particles. A branch rotation
is a turn, around a randomly chosen pivot particle, of the whole section starting from the
pivot particle and going to the end of the chain. With these moves we expect to have a good
balance between cooperative moves and single-particle moves, as well as an efficient sampling
of the compact configuration of the polymer, which are crucial for the study of the equilibrium
properties of the native state.

Each move can be accepted or rejected according to the following acceptance rule, based
on the configurational energy of the system,

Pacc
� e � β 	 EN � EO 


1 � e � β 	 EN � EO 
 �
where EN and EO represent the energy of the new state and of the old state respectively;
β � 1 � T is the inverse temperature computed in reduced units. This acceptance rule satisfies
detailed balance. If the system is ergodic (i.e. if every state can be reached from any other
state in a finite number of Monte Carlo steps), the algorithm will ensure that every state is
sampled with a frequency proportional to its Boltzmann weight. This choice of the acceptance
rule is not unique; however we preferred it because it ensures that the total weight of the old
and the new configuration is always one.

It is often convenient to group different protein conformations according to some “order
parameter”. For instance, one could classify states according to their radius of gyration or
according to the number of nearest-neighbor contacts that they have in common with the
lowest-energy (“native”) state of the protein. A single value of such an order parameter may
correspond to many different conformations. The probability to visit states with a given order
parameter Q is determined by the free energy F

�
O � . In the case that all states with a given

order parameter have the same energy, we can write F
�
Q � � E

�
Q � � TS

�
Q � , where S

�
Q � is the

entropy of the system with order parameter Q: S
�
Q � � k lnΩ

�
Q � , where Ω

�
Q � is the number

of states with order parameter Q. In general, the free energy is simply defined by

F
�
Q � � � T ln � P � Q ��� � (3.1)

where P
�
Q � denotes the probability that the system is in a state with order parameter Q at

temperature T . Clearly, the most probable state of the system has the lowest free energy.
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3 Free Energy Calculations

���������

Figure 3.1: Monte Carlo moves used in the folding program. From top to bottom : corner flip,
crankshaft, rotation

When studying the approach of the system to its lowest free-energy state, it is often useful
to compute the free-energy “landscape” (i.e. the function F

�
Q � ), as the topography of this

landscape can suggest whether or not there are easy paths that bring the system from a non-
native state to the native state.

During the simulation we measured F as function of several order parameters. One or-
der parameter that we employed in all cases studied was the number of native contacts in a
given conformation. This order parameter is a commonly used to measure the progress of the
protein-folding process. In cases where we are considering a model with two target structures
whose relative free energy can be changed by an external perturbation, we define an order
parameter that measures the progress from one target state to the other: this order parameter is
equal to the difference in the number of contacts that belong to two reference structures (e.g.
1 and 2) i.e.

Q
�
C � � N

∑
i � j

� C 	 1 

i j Ci j � C 	 2 


i j Ci j
� � (3.2)

where C 	 1 

i j and C 	 2 


i j are the contact maps of the two target structures, whilst Ci j is the contact
map of the instantaneous conformation To be more precise: as we consider two distinct target
states (say 1 and 2 ), we give a value � 1 to every contact that belongs to structure 1 and
a value � 1 to every native contact of structure 2. Contacts that appear in both 1 and 2 do
not contribute to this order parameter. The reason why we assign negative values to native
contacts of structure 2, is that we compute the free energy difference between the protein in
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conformation 1 and 2. If we would have assigned 0 to the contacts of structure 2 then we
would not have been able to distinguish it from unfolded states that do no have any native
contacts at all.

In addition to the number of native contact we also introduced other order parameters to
explore different properties of the system. For instance in chapter 4, we will investigate the
design of specific interactions between a pair of proteins. For that calculations we found it
useful to measure the number of contacts with a substrate regardless of whether they were
native (i.e. involved in the selective binding) or not. The definition of the free energy does
not substantially change and is easily extended to all the order parameters used in this thesis.
In the methods subsection of each chapter, we give the problem-specific order parameters that
are used.

Let us next consider the numerical determination of the free-energy landscape F
�
Q � . It is

important to note that a direct (brute force) calculation of the histogram P
�
Q � is not efficient

because regions of high free energy are sampled infrequently, in particular at low temperatures.
Different techniques are usually applied to increase the sampling in such situations. As the
work described in this thesis progressed, we found it necessary to develop novel schemes to
sample free-energy landscapes. Below, we briefly describe the methods used.

For the study of the free-energy landscape of relatively short chains, we made extensive
use of the so called Adaptive Parallel Tempering (APT) scheme [17]. APT is an extension
of the well-known Umbrella Sampling scheme. The latter method speeds up the sampling
of a rugged free-energy landscape by flattening it. A simple way to flatten the landscape is
to add a biasing potential to the normal Hamiltonian. Ideally, the biasing potential would
be equal to � F

�
Q � , in which case the resulting free-energy landscape would be perfectly

flat (the probability to observe the system in a state with order parameter Q is proportional
to exp

� � β
�
F
�
Q � � W

�
Q � � ). But, of course, we do not know F

�
Q � a priori. This is where

the “adaptive” part of APT comes in. APT uses an iterative method to estimate the biasing
potential. During the simulation we sample the probability P

�
Q � of sampling a conformation

with order parameter Q (Eq. 3.2). After a specified number of steps we calculate the new
biasing potential W

�
Q � with the following recursive equation

Wi
�
Q � T � � Wi � 1

�
Q � T ��� U lnP

�
Q � T � with W0

�
Q � T � � 0 � (3.3)

where the index i indicates the iteration, and U is a constant which we give a value between 0 � 5
and 0 � 05 depending on how much the biasing potential varies from one iteration to the other.
Once we have the new biasing potential we add it to the energy in the acceptance criterion of
every move. The biasing potential W

�
Q � depends on the conformation of the system through

the order parameter Q, but it also depends on temperature. This temperature dependence is
important when we combine umbrella sampling with multicanonical parallel tempering [17].
The basic idea behind parallel tempering is that we run two or more simulations in parallel.
Each simulation runs at a different temperature (or, more in general, at a different value of
an external control parameter). In addition to the normal Monte Carlo moves in the different
systems, we occasionally attempt to swap the control parameter of two systems. In the present
case, where the control parameter is temperature, the acceptance rule for a temperature swap

16



3 Free Energy Calculations

move is then

Pacc � e∆β∆E � ∆W (3.4)

∆W � W
�
Qi � Tj � � W

�
Q j � Tj � � W

�
Q j � Ti � � W

�
Qi � Ti �

where i and j are replica indices. The advantage of the APT algorithm is that it makes it
possible to equilibrate systems with a rugged free-energy landscape. However, we found that
the efficiency of the APT algorithm could be greatly increased by combining it with the so-
called Waste Recycling Monte Carlo method [18, 19]. The resulting scheme, called Virtual-
move Parallel Tempering (VMPT), turns out to be very efficient in sampling states over a
wide range of free energies. This is an essential requirement for the study of conformational
changes, because the states that are most stable in the absence of a perturbation will become
less stable (high free energy) after the perturbation is applied. In the next section, we describe
the VMPT scheme in more detail.

3.1 VMPT Virtual-move Parallel Tempering

The VMPT method boosts the efficiency of the accumulation of statistical averages by includ-
ing information about all potential parallel-tempering trial moves, rather than just those trial
moves that are accepted. As a test, we compute the free-energy landscape for conformational
changes in simple model proteins. With the new technique, the sampled region of the confor-
mational space in which the free-energy landscape could be reliably estimated, increases by a
factor 20.

The exponential increase in the speed of computers during the past decades has made it
possible to perform simulations that were utterly unfeasible one generation ago. But in many
cases, the development of more efficient algorithms has been at least as important.

One of the most widely used schemes to simulate many-body systems is the Markov-chain
Monte Carlo method (MCMC) that was introduced in 1953 by Metropolis et al. [20]. In this
algorithm the average properties of a system are estimated by performing a random walk in
the conformational space, where each state is sampled with a frequency proportional to its
Boltzmann weight. In the Metropolis algorithm, this is achieved by attempting random moves
from the current state of the system to a new state. Depending on the ratio of the Boltzmann
weights of the new and the old states, these trial moves may be either accepted or rejected.
Metropolis et al. showed that the acceptance probability of trial moves can be chosen such
that Boltzmann sampling is achieved.

One important application of the MC method is the estimation of the Landau free energy
F of the system as function of some order parameter

F
�
Q � � � T � lnP

�
Q ��� �

There are many situations where the MCMC method does not yield an accurate estimate of
F , because it fails to explore configuration space efficiently. This is, for instance, the case
in “glassy” systems that tend to get trapped for long times in small pockets of configuration
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space. In the early 1990’s the so-called parallel-tempering (PT) technique was introduced to
speed up the sampling in such systems [21, 22, 23, 24, 25, 26, 27].

In a parallel-tempering Monte Carlo simulation, n simulations of a particular model sys-
tem are carried out in parallel at different temperatures (or other at different values of some
other thermodynamic field, such as the chemical potential or a biasing potential). Each of
these copies of the system is called replica. In addition to the regular MC trial moves, one
occasionally attempts to swap the temperatures of a pair of these systems (say i and j ). The
swapping move between temperature i and j, is accepted or rejected according to a criterion
that guarantees detailed balance, e.g.:

Pacc
�
i j � � e∆βi j∆Ei j

1 � e∆βi j∆Ei j
(3.5)

where ∆βi j is the difference of the inverse of swapping temperatures, and ∆Ei j is the energy
difference of the two configurations. Although there are other valid acceptance rules, we used
the one in Eq. 3.5 because it was easy to implement, and it ensures that the total weight of the
old and the new configuration is always one.

To facilitate the sampling of high free-energy states,”difficult” regions, we use the Adaptive
Umbrella Sampling [28, 29, 30, 31, 32]. In this (iterative) scheme, a biasing potential is
constructed using the histogram of the states, sampled during an iteration as follows

WI
�
Q � T � � WI � 1

�
Q � T � � a ln

�
PI
�
Q � � � (3.6)

where W is the biasing potential function of an order parameter Q, I is the iteration number, a
is a constant that controls the rate of convergence of W (a typical value for a is 0 � 05 ), and T
is the temperature. After iteration, W converges to the Landau free energy. As a consequence,
P
�
Q ��� exp

� � βF
�
q � � exp

�
W
�
Q � � becomes essentially flat and the biased sampling explores a

larger fraction of the configuration space. During the MC sampling, we include the bias, and
only at the end of the simulation we compute the free energy F

�
Q � from

F
�
Q � � � T � lnP

�
Q � � W

�
Q � T � � �

where P
�
Q � is the probability of observing a state characterized by the order parameter Q, and

W
�
Q � T � is the biasing potential of the last iteration computed at temperature T . Combined

with Parallel Tempering, the acceptance rule for the temperature swapping move is then

acci j
� e∆βi j∆Ei j � ∆Wi j

1 � e∆βi j∆Ei j � ∆Wi j
(3.7)

∆Wi j
� WI

�
Qi � Tj � � WI

�
Q j � Tj � �

WI
�
Q j � Ti � � WI

�
Qi � Ti � (3.8)

where i and j are replica indices, and I is the iteration number. We refer to this scheme as APT
(Adaptive Parallel Tempering [33, 17].

In the conventional MCMC method all information about rejected trial moves is discarded.
Recently Daan Frenkel has proposed a scheme that makes it possible to include the contribu-
tions of rejected configurations in the sampling of averages [18]. In the present section, we
show how this approach can be used to increase the power of the parallel-tempering scheme.
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In this scheme, we only retain information about PT moves that have been accepted. How-
ever, in the spirit of refs. [18], we can include the contribution of all PT trial moves, irrespec-
tive of whether they are accepted. The weight of the contribution of such a virtual move is
directly related to its acceptance probability. For instance, if we use the symmetric acceptance
rule for MC trial moves, then the weights of the original and new (trial) state in the sampling
of virtual moves are given by

PN
� e∆β∆EO � N � ∆WO � N

1 � e∆β∆EO � N � ∆WO � N

PO
� 1

1 � e∆β∆EO � N � ∆WO � N
�

where ∆WO 
 N is defined in Eq. 3.8. We are not limited to a single trial swap of state i with
a given state j. Rather, we can include all possible trial swaps between the temperature state
i and all N � 1 remaining temperatures. Our estimate for the contribution to the probability
distribution Pi corresponding to temperature i is then given by the following sum

Pi
�
Q � � N � 1

∑
j � 1

�
1

1 � e∆βi j∆Ei j � ∆Wi j � δ
�
Qi � Q � �

N � 1

∑
j � 1 � e∆βi j∆Ei j � ∆Wi j

1 � e∆βi j∆Ei j � ∆Wi j � δ
�
Q j � Q � �

where the delta functions select the configurations with order parameter Q. As we now com-
bine the Parallel tempering algorithm with a set of parallel virtual moves, we refer to the
present scheme as Virtual-move Parallel Tempering (VMPT).

In what follows we will extensively use this scheme to compute the free energy landscapes
of different systems. However to show the efficiency of VMPT, we want to anticipate the
calculation of the free energy landscape of a simple lattice-protein model. In this model,
interaction with a substrate can induce a conformational change in the proteins.

Specifically, the model protein that we consider represents a heteropolymer containing 80
amino acids, while the substrate has a fixed space arrangement and contains 40 residues, see
Fig. 3.2.
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(a) (b) (c)

Figure 3.2: Spatial arrangement of the chain in the structures used to test the model (a , b) ,
and intermediate structure (Q � 25).

The configurational energy of the system is defined as

EC
� Eintra � Einter

� NC

∑
i

� NC

∑
j �� i

Ci jSi j � NS

∑
j ���� i

Ci j � Si j � � � (3.9)

where the indices i and j run over the residues of the protein, while j � runs only over the
elements of the substrate, C is the contact defined in Eq. 2.2 and Si j is the interaction matrix.
For S we use the 20 by 20 matrix fitted by Miyazawa and Jernigan [3] on the basis of the
frequency of contacts between each pair of amino acids in nature.

We change the identity of the amino acids along the chain by “point mutations” which,
in this context, means: changes of a single amino acid. In doing so we explore the sequence
space of the protein and the substrate, and we minimize at the same time the configurational
energy of the system in two distinct conformations, one bound (Fig. 3.2.a) and one unbound
(Fig. 3.2.b). The design scheme is an extension of the basic one explained in section 2.2. In
this scheme, trial mutations are accepted if the Monte Carlo acceptance criterion is satisfied
for both conformations. Further details are given in Chapter 5 where will give an accurate
description of the model system and the design techniques applied. For the purpose of this
chapter let us assume that the design algorithm can generate a model protein that has the
ability to change its conformation when bound to the substrate.

The sampling of the conformations is performed with three basic moves: corner-flip,
crankshaft, branch rotation. The corner-flip involves a rotation of 180 degrees of a given
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particle around the line joining its neighbors along the chain. The crankshaft move is a rota-
tion by 90 degrees of two consecutive particles. A branch rotation is a turn, around a randomly
chosen pivot particle, of the whole section starting from the pivot particle and going to the end
of the chain. For all these moves we use a symmetric acceptance rule with the addition of the
biasing potential calculated with the umbrella sampling scheme (Eq. 3.6)

accO 
 N
� eβ∆EO � N � ∆WO � N

1 � eβ∆EO � N � ∆WO � N
� (3.10)

where ∆EO 
 N is the energy difference between the new and the old state (Eq. 3.9), and
∆WO 
 N is the difference in the bias potential from the same states (Eq. 3.6). We sample
the free energy, as a function of two order parameters, of which the first is the conformational
energy defined in Eq. 3.9, and the second is the difference of the number of contacts belonging

to two reference structures (e.g. 1 and 2) Q
�
C � from Eq. 3.2. For our specific case, C 	 1 


i j repre-

sents the structure in Fig. 3.2.a, while C 	 2 

i j corresponds to the one shown in Fig. 3.2.b, and Q

has values between -15 and 30. Because the number of native contacts includes the contacts
with the substrate of the reference state, it can be used to compute the free energy difference
between the unbound state and the specifically bound one.

We performed 15 simulations, 5 of them with VMPT (using the parameters in Tab. 3.1.I)
and the other 10 with APT ( 5 using the parameters in Tab. 3.1.I, and 5 with the parameters in
Tab. 3.1.II).

Simulation Temperatures Number
of Itera-
tions

Sampling
Steps

APT
exec time
(sec)

VMPT
exec
Time
(sec)

I 0.1 0.125 0.143 0.167 0.2 0.222

0.23 0.25 0.270000 0.29 0.31 0.33

0.350000 0.37 0.4 0.444 0.5

400 4108 2600 3200

II 0.1 0.125 0.143 0.167 0.2 0.222

0.23 0.25 0.270000 0.29 0.31 0.33

0.350000 0.37 0.4 0.444 0.5

1000 21010 150000

Table 3.1: Simulation parameters used for comparing the VMPT algorithm with the old
scheme. In Simul. I we used the same parameters for both algorithms. The re-
sults in Fig. 3.3 show that VMPT was much more efficient in sampling the free
energy. In Simul.II, we increased by two orders of magnitude the number of steps
of the simulation with APT to obtain a sampling of F

�
Q � comparable to the one

computed using the new VMPT scheme (Fig. 3.4). Execution times computed on a
SGI Altix 3700 with Intel Itanium II, 1,3 GHz

In Fig. 3.3 we compare the average free energies at T � 0 � 1 (with error bars). In this figure,
we only show those free energies that were sampled in all the 5 simulations of each group.
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>From the figure it is clear that the VMPT approach leads to a much better sampling of the
free-energy landscape. The advantage of the VMPT approach becomes even more obvious if
we plot the free energy “landscape” as function of two order parameters (viz. the conforma-
tional energy (Eq. 3.9) and the number of native contacts). In this case the APT method is
almost useless as only small fragments of the free-energy landscape can be reconstructed. The
total number of points sampled with VMPT is 20 times larger than with APT, and the energy
range that is probed, is one order of magnitude larger (see Fig. 3.5). To check the accuracy of
the VMPT method, we compared the average free energy obtained by APT and VMPT at high
temperatures where the APT scheme works reasonably well. As can be seen in Fig. 3.4 the
two methods agree well in this regime (be it that a much longer APT simulation was needed).
Even though the APT runs required 20 times more MC cycles, it still probes about 30% less
of the free-energy landscape than the VMPT scheme.

As the implementation described above is not based on a particular feature of the system
under study, the results obtained in this study suggest that the VMPT method may be useful
for the study of any system that is normally simulated using Parallel Tempering. Examples of
the application of Parallel Tempering in fully atomistic simulations of protein folding can be
found in refs. [34, 35].
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Figure 3.3: Average free energy computed with 5 run (10^8 MC steps Tab. 3.1.I) of the
old scheme, compared with the result of 5 VMPT simulation ( 10^8 MC steps
Tab. 3.1.I), at T � 0 � 1. The points with F � 0 correspond to values of Q that have
not been sampled.
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Figure 3.4: Average free energy computed with 5 long run (10^10 MC steps Tab. 3.1.II) of the
old scheme, compared with the result of 5 shorter VMPT simulation ( 10^8 MC
steps Tab. 3.1.I), at T � 0 � 5
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Figure 3.5: Plot of the free energy landscapes computed with the algorithm VMPT (a) and the
standard scheme APT (b). The free energies F

�
EC � Q � are function of the confor-

mational energy EC (Eq. 3.9) and of the number of native contacts Q (Eq. 3.2).
It is important to notice the big difference in the sampling, in fact the number of
points sampled with VMPT is 30 times bigger than the one obtained with APT.
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4 Design Refoldable Molecules

We report a numerical study of the design of lattice heteropolymers that can refold when the
properties of only a few monomers are changed. If we assume that the effect of an external
agent on a heteropolymer is to alter the interactions between its constituent monomers, our
simulations provide a description of a simple allosteric transition. We characterize the free
energy surfaces of the initial and modified chain molecule. We find that there is a region of
conformation space where molecules can be made to refold with minimal free energy cost.
This region is accessible by thermal fluctuations. The efficiency of a motor based on such
an allosteric transition would be enhanced by “borrowing” heat from the environment in the
initial stages of the refolding, and “paying back” later. In fact, the power cycle of many real
molecular motors does involve such a borrowing activation step.

4.1 Introduction

Molecular motors are molecules that can convert chemical energy into mechanical energy.
The effect of the chemical reaction is to induce a conformational change in the molecule.
As the final conformation has a lower free energy than the initial one, the molecule has the
capacity to perform an amount of work that is, at most, equal to this free energy change. The
amount of work that is delivered in practice depends on many factors, such as the speed of
the transformation and the mechanical coupling of the relevant “reaction coordinate” to the
outside world.

In molecular motors, as well as many others proteins, the transition between conformations
is induced by a change in the environment (e.g. a pH change), the absorption of a photon, or
the chemical transformation of a fuel molecule (e.g. ATP or lactose) attached to the protein.
The effect of this external element is to change the structure or interactions of some “active”
parts of the protein. These changes, in turn, lead to a rearrangement of the protein structure.
The fact that molecular motors are microscopic, has important consequences for their mode of
operation. In fact, the second law of thermodynamics makes it impossible for a macroscopic
Carnot engine to “borrow” significant amounts of heat from the environment. In contrast,
thermal fluctuations play an important role in the behavior of molecular motors.

Changes in conformation due to altered interactions between monomers are also of interest
in a different context, namely in the design of mutations that significantly modify the native
structure of a protein. In 1993, Rose and Creamer [36] formulated this problem as follows:
given two distinct protein folds of similar length, what is the minimum number of amino
acids that must be changed in order to transform one fold into the other? In fact, Rose and
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Figure 4.1: The figure represent the level of approximation that we intend to use for the de-
scription of the protein world. The lattice model can be viewed as a representa-
tion of proteins that is intermediate between a fully atomistic model (that would
be computationally intractable except in very simple cases) and a representation
where all internal degrees of freedom of the protein are ignored.

Craemer formulated the so-called “Paracelsus challenge”: the award of a prize to anyone who
could convert one protein fold into another without changing more than 50% of the original
protein’s sequence. A possible solution to this challenge was proposed by Dala et al. [37] who
designed a protein sequence that could be converted from its native β -sheet conformation into
an α -helix structure by changing fewer than half of the amino acids.

At the level of the relative stability of native structures, the present study of allosteric
transitions is equivalent to the problem of conformational changes due to mutations. The dif-
ference appears when we consider the actual pathway by which the molecule refolds after the
change has been introduced: this pathway has little physical meaning in the case of mutation,
but is of considerable interest regarding allosteric transitions. In this chapter, we explore a sim-
ple model for allosteric transitions that is intermediate between a realistic, but prohibitively
costly, atomistic model and a simple, but abstract, two-state model.

We model the chain as a linear, polypeptide-like heteropolymer, living on a lattice. In what
follows, we shall refer to this molecule as a “protein” and, in fact, we shall use model parame-
ters that apply to proteins. We stress, however, that the approach is not limited to protein-based
conformation switches. Our central assumption concerns the effect of a chemical reaction on
the chain molecule. We assume that the chemical reaction does not directly lead to a confor-
mational change of the molecule. Rather, we assume that it leads to a change in the effective
interaction between some of the monomers in the chain.

In our model, we account for this difference in the properties of individual monomers
by changing their chemical nature. This modification could be thought of, for example, as
a change of the ionization state of acidic or basic residues triggered by a pH change, or as
resulting from binding to a metal ion. For simplicity, however, rather then introducing a new
set of interactions between specific residues, we exchange them for other members of the
standard set of twenty amino acids. In the language of proteins: we change the identity of one
or more amino acids in the chain. Once an amino acid has been modified, the molecule may be
able to lower its free energy by transforming into a different native state. In the present model,
it is this thermodynamic incentive that drives the refolding to a new spatial arrangement.
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WKCAVCEMNRCILCDTWKCFICEMERDGQKYPSRQK Sequence A
WKCAVCEMNRCILCDTWKCFICEMERDGQKYPS
IQM

Sequence B

WKCAVCEMNRCILCDDWKCFGCEMPRKNPMYTS
EQH

Sequence C

WKCAVCEMNRCILCDDWKCFGCEMPRKNEHYT
SIQP

Sequence D

HWKLHDMYVWRTKDMLPWREVDMYAQIPPITE
NSKAFESCRGFQCLNG

Sequence E

HWKLHDMYVWRTKDMLPWREVDMYAQIPPIT EN-
SKAFESCRGFQCNKG

Sequence F

Table 4.1: Sequences generated for the test structures (Fig. 4.2). The letters in bold are the
amino acids chosen by the design program to induce the conformational change.

Below, we first describe the techniques used to simulate our system, we then present the
simulations of the refolding process, and finally we discuss some of the implications of this
work.

4.2 Results

To illustrate the mechanism by which allosteric transitions proceed in our model, we consider
the refolding behavior of three different model molecules. In Fig. 4.2 we show the target
structures between which the transitions occur: 1 � 2, 3 � 4, and 5 � 6. Because the same
procedure is applied in every case, we focus our explanation on the conformational change
from structure 1 (Fig. 4.2a) to structure 2 (Fig. 4.2b).

4.2.1 Design of a switchable polymer

Following the procedure explained in section 2.2 we first designed a sequence that would fold
into structure 1 (see Fig. 4.2a). We explore possible amino acid sequences by using both the
conventional swapping move that does not change the composition and the switch move, that
does. The acceptance criterion of the latter trial move depends on the parameter Tp that has to
be chosen. A typical result after 10 million iterations is the sequence A (Table 4.1).

We applied the same technique to the other initial structures 3 and 5 (Fig. 4.2c,e), and the
resulting sequences are respectively sequence C and sequence E (Table 4.1).

Sequences A, C and E, listed in Table 4.1, were used as the starting point to design the
modified sequences that would refold into structures 2, 4 and 6, respectively (see Fig. 4.2b,d,f).
We limited our search to those sequences that differed by a given number of residues. For the
first and the last example we constrained the sequence that formed the initial conformation
to differ by, at most, two amino acids from the sequence that formed the final conformation.
For the transition 3 � 4, we imposed a threshold of 4 residue differences. These “Paracelsus
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Figure 4.2: Spatial arrangement of the chain in the structures used to test the model
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numbers” are purely empirical: they are the lowest threshold for which refolding to the desired
structures could be obtained in each case.

The sequences that are listed in Table 4.1 are the ones used in the simulations described
below. We stress that we did not impose the positions of the “mutations”. But, not surprisingly,
they appear to be concentrated in that part of the chain that is involved in the conformational
change. Having constructed the two desired sequences, we performed a Monte Carlo (MC)
simulation to study the equilibrium properties of the native state of each sequence.

4.2.2 Free energy Calculations

First, we checked if changing from sequence A to B (see Table 4.1) did, indeed, induce the
desired conformational change. To this end, we started with a random coil of a molecule
with sequence B. We used a standard MC simulation to let this structure fold. After the chain
had reached its native structure (1), we changed the sequence from A to B and continued the
simulation. After sequence B reached its native state (2), we switched back to sequence A, to
verify that the refolding works both ways. In Fig. 4.3 we plot the conformational energy of
the chain (Eq. 3.9) as a function of the number of MC steps, highlighting the time windows
corresponding to each sequence. In each window, we see that immediately after the sequence
switch, the system is in a state of very high potential energy, but then the chain quickly relaxes
into its new native state. This shows that it is indeed possible to induce a conformational
change with a relatively small modification of the chemical nature of some amino acids along
the chain. The same procedure was also applied to the other sets of sequences. The results
thus obtained were qualitatively similar to the one we obtained for the A-B pair.

Subsequently we studied the free energy profile using the parallel tempering described in
section 2. The results of these simulations are shown in Fig. 4.4 and exhibit the characteristic
behavior expected for a molecule that can undergo a folding transition. At low temperatures,
the native state has a free energy that is lower than that of the molten globule (characterized by
an order parameter close to zero). However, to study how one structure refolds into the other,
we need to know the free energy landscape of, for example, sequence A in the vicinity of the
native structure of B, and vice versa.

In order to improve the sampling of conformations that would hardly be sampled in a
brute-force simulation, we proceed according to the method explained in section 3 and we
use the APT method to construct an efficient biasing potential. The result of the simulation
is the complete spectrum of the free energy for each of the two sequences. In Fig. 4.6 we
plot the free energy of sequences A and B. As a consistency test, we compare in Fig. 4.5
the easily accessible part of the free energy of sequence B calculated with and without the
umbrella-sampling scheme.

Now that we know the free energy curves for sequences A and B, we can study the effect
of a sequence change. The crossing point of the curves (Fig,4.6) corresponds to a value of the
order parameter for which we can change the sequence from A to B without changing the free
energy.

While the order parameter that we have used thus far allows us to discriminate between
states that are close to one native state or the other, it is less convenient to probe the intermedi-
ate region. The reason is that there are many different conformations with an order parameter
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Figure 4.3: Sequence switching simulation. On the vertical axis we plot the conformational
energy EC (Eq. 3.9) while the abscissa is the number of Monte Carlo steps. During
the simulation we switch from sequence A to sequence B, and look at the confor-
mation corresponding to the lower energy. For the sequence A the native structure
is 1 (Fig. 4.2.a), while for sequence B the structure is 2 (Fig. 4.2.b). The process
is reversible; in fact, when, after 10 million steps we switch back to sequence A,
the lowest energy conformation is structure 1.
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Figure 4.4: Result of the folding simulation for the sequences A and B, obtained using a par-
allel tempering algorithm. On the horizontal axis is the number of native contacts
Q defined in Eq. 3.2. On the vertical axis is the free energy F
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the need for improved sampling.
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Figure 4.5: Comparison between the free energy F
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Q � calculated with an umbrella sampling

simulation and a parallel tempering one, in a window of the order parameter Q
(Eq. 3.2) were the two methods should give the same results. The agreement be-
tween the two methods provides confidence in the validity of our results.
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close to zero. Not all of these conformations are equally important for the refolding process.
We therefore need a second order parameter that allows us to get more detailed information
about the free energy landscape in the intermediate state. We found that the conformational
energy of the chain was suitable as a second order parameter.

Figure 4.7 shows the free energy landscapes for the folding of sequences A and B. Inter-
estingly, the two surfaces show an overlap close to the crossing point of the curves in Fig. 4.6.
This means that in the region of overlap, it is possible to change the amino acid sequence
without changing the conformational energy of the chain. This suggests that in those confor-
mations of the chain, the “mutated” amino acids are not in contact with the rest of the chain.
The possibility of changing the sequence without affecting the potential energy of the chain
facilitates the action of an external agent.

Similar behavior has been postulated for real protein motors that undergo a progressive
change in the conformation. For instance, in the hand-over-hand model of kinesin by Schief
and Howard [38], the external agent only acts if the protein is ready to accept it. Such behavior
could easily be described by an extension of the present model where we only allow sequence
switching when thermal fluctuations bring the chain into a favorable conformation. As can be
seen from figure 4.4, both proteins can reach conformations with an order parameter between� 2 and 1 by spontaneous thermal fluctuations of the order kT .

Clearly, the present model only deals with a single, albeit essential, aspect of a molecular
motor, namely the property of a motor head to undergo an allosteric transition. For one thing,
we do not consider explicitly the reaction between the external agent (e.g. ATP) and the
chain molecule: we simply assume that the effect is to expose some other amino acids in the
molecule. It should be possible to construct a model where these changes follow in a natural
way from the chemical natures of both the chain molecule and the external agent. Then it
would be interesting to see how the work that can be performed by the molecule (i.e. the
difference in free energy between the initial and final states in the refolding process) depends
on the free energy change associated with the chemical reaction with the external agent.

4.3 Discussion

Recently, Borovinskiy and Grosberg [39] reported a numerical study that focused on another
aspect of refolding in lattice model proteins. In the latter work, the strategy was to design not
just the initial and final states of the model protein, but also to design the sequence such that
every single step of the conformational change would release approximately equal amounts
of free energy. This imposed property was based on the idea that a protein stores free en-
ergy like a spring. Our model differs from this approach because we do not constrain the
path by which the conformational changes proceed. In particular, by not imposing how the
free energy is stored in the molecule, we find a barrier between the two states, the height of
which depends strongly on the starting conformation of the chain. The refolding process is
assisted by “uphill” thermal fluctuations that put the system in a favorable initial condition
and effectively reduce the amount of chemical work that would be wasted in the refolding
process. Evidence for the relevance of thermal fluctuations in initiating refolding comes from
experimental studies on motor proteins [38] and is captured at a phenomenological level by
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Figure 4.6: Plots of the free energy F
�
Q � of all the sequence pairs (A � B,C � D, and E � F) as

a function of the number of native contacts Q (Eq. 3.2). These data were obtained
with a joint parallel tempering and umbrella sampling simulation. In this plot is
visible the crossing point between the free energy curves where the energetic cost
of the sequence switching is lower.
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Figure 4.7: Plot of the free energy landscape of the folding of the sequences pairs A � B,C � D,
and E � F. The free energies F

�
EC � Q � are function of the conformational energy

EC (Eq. 3.9) and of the number of native contacts Q (Eq. 3.2). The interesting fea-
ture of the plot is the overlapping area. The conformations in this area are common
to both sequences. Comparing these plots with the corresponding ones in Fig. 4.6
( for convenience, we have replot it on the z-y plane) we see that close the states
have the same conformational energy. From the parallel tempering simulation we
know that those conformations can be reached just by thermal fluctuations.
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thermal ratchet models [40]. Surprisingly, we find that, even without designing the pathway
for refolding, our model spontaneously reproduces the “spring-like” gradual release of free
energy during refolding.

To summarize, we have introduced a simple model to describe the behavior of a protein
undergoing an allosteric transition. The protein is approximated by a linear heteropolymer on
a lattice. The role of the external signal is played by an effective change of the amino acids
along the chain. With this model we want to demonstrate that by destabilizing some essential
elements of a conformation we can induce the chain to refold into a different structure. We
can control this process by using a sequence design algorithm. With a folding program we
characterized the equilibrium properties of the chain before and after the signal. Using the
order parameters derived from the number of native contacts and the conformational energy,
we compared the free energy landscape of the two sequences. The most important feature
of the free energy plots is the overlapping region. The structures in this window are those
where the contacts between the “mutated” residues and the rest of the amino acids are broken.
In fact, they have the same conformational energy. In these particular states the energy cost
for the transition is very low. We also emphasize that these states are accessible by thermal
fluctuations. We believe that our model is able to reproduce the general behavior of allosteric
transitions in proteins, where the external agent uses thermal fluctuations to lower the free
energy cost of its action. This is also the basis of thermal ratchet models for molecular motors,
where the thermal fluctuations are essential to drive the system.
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One of the key properties of biological molecules is that they can bind strongly to certain
substrates yet interact only weakly with the very large number of other molecules that they
encounter. Using a simple lattice model, we test several methods to design molecule-substrate
binding specificity. We characterize the binding free energy and the binding energy as function
of the size of the interacting units. Our simulations indicate that there exists a temperature win-
dow where specific binding is possible. Binding sites that have been designed to interact quite
strongly with specific substrates are unlikely to bind non-specifically to other substrates. In
other words, the conflict between specific interactions between small numbers of biomolecules
and weak, non specific interaction with the rest, need not be a very serious design constraint.

5.1 Introduction

Biomolecules, such as proteins, tend to bind strongly to specific binding sites in target molecules.
In addition, the binding needs to be selective: the molecules should bind strongly to one, or
a few, partners and weakly, if at all, with all other biomolecules. The requirement that the
binding should be strong and specific imposes constraints on the design of the binding sites.
In particular, it suggests that binding sites should have a shape that is complementary to that of
the substrate binding site and that its surface is patterned. Often, the total interaction (free) en-
ergy can be approximated as the sum of local intermolecular interactions that add coherently.
In what follows, we focus on the role of the energetic patterning of binding sites.

It is important to recall that, even if the local intermolecular interactions are effectively
random, binding is still possible. To see this, consider a non-specific interaction with an asso-
ciated binding energy that is the sum of N terms. We assume that the individual contributions
are Gaussian distributed with a zero mean and variance σ2 [6]. The probability P of having a
binding energy E is given by

P
�
E � � �

2πNσ2 ��� 1 � 2e � � E2 � 2Nσ2 � � (5.1)

where N is the size (the number of interaction sites) of the binding region. The probability to
form a bond its determined by the Boltzmann factor exp

� � βE � corresponding to the interac-
tion energy E. Even if the average interaction energy is zero, two sufficiently large binding
regions are still likely to bind, as the average Boltzmann factor is given by�

exp
� � βE � � � exp

�
Nσ2β2 � 2 �
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This implies that for large N, a truly random binding site is not inert. The effect of non-specific
(“random”) interaction has been discussed in detail by Pande et al. in the context of a study
of the freezing transition in heteropolymers [11]. Note that the effective interaction strength
due to random interactions scales with N, just as is the case for the interaction strength of
specific (designed) interactions. However, the average strength per monomer is larger for
designed specific interactions and hence one might expect that for any N one can always
find conditions where specific binding dominates. But this argument ignores the fact that
the spread in the binding free energy for random sequences is proportional to 	 N. Hence,
for small enough N there are, most likely, specific random sequences that bind at least as
strongly as the “designed” sequence. As N increases, ( 	 N � N decreases) this becomes less of
a problem.

The above discussion suggests that binding sites should contain a sufficiently large num-
ber of monomeric units in order to guarantee that a designed binding site binds significantly
stronger to a given template than a random binding site. Yet the site should be sufficiently
small that non-specific bonds can easily be disrupted by thermal fluctuations. One might think
that this could be achieved by designing the individual site-site interactions to be small com-
pared to the thermal energy kBT . However, the same site-site interactions are responsible for
the stability of the native state of the protein. Hence, weakening these interactions (or, equiva-
lently, increasing the temperature), may result in denaturing of the protein, rather than in more
specific binding.

There is a distinction between the specificity and selectivity of binding [41]. In order
to quantify selectivity, it would be necessary to count the number of the substrate to which
the protein can bind. In the present chapter, we do not attempt such an exhaustive search
(as this would be prohibitively expensive for the model systems that we consider). However,
Gutin et al. [42] showed, for a discrete version of the Random Energy Model (REM), that
the probability of degeneracy of the lowest energy state decreases exponentially as its energy
is lowered. This suggests that the specificity that we discuss below will, in most cases, also
imply considerable selectivity.

In what follows, we consider under what conditions we can “design” a model substrate-
binding site pair that binds significantly stronger than the corresponding “random-energy”
pair, while maintaining the structural integrity of the native state of the protein in solution.
Hence, binding and folding are both the consequence of the heterogeneous interactions be-
tween monomeric units. To this end, we explore the role of system size and temperature on
the binding specificity in a model that mimics a general protein-substrate system. We consider
two molecules, one of which (the “protein”) is free to move, while the other is kept fixed and
acts as the binding site of a substrate. We model the protein backbone as a linear, polypeptide-
like heteropolymer living on a lattice. We then design (“evolve”) the monomer sequence of
the molecules according to three different scenarios, that we will refer to as OO,OR,and RR.
First we consider the case of cooperative design, where the sequence of both the substrate and
the ligand are evolved to increase the binding affinity. The second scenario is the model for a
ligand that evolves to bind a substrate with a sequence that has been fixed a priori. The differ-
ence between model OO and OR lies in the role of the substrate. In scenario OO, the binding
information is distributed over both protein and substrate: this approach should result in a
protein-substrate pair that bind exclusively to each other. In the second approach, the protein
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is designed to bind to a specific substrate which, in its turn, can have multiple binding partners
(low selectivity). Case RR represents the case of a protein-substrate pair that does not bind.
This is the reference state that allows us to define the specificity of the other two systems as a
function of the substrate size and temperature. In the first section of this chapter we describe
the simulation techniques that we used to design and study protein-substrate interaction. We
then discuss the binding of the two different molecules on the same substrate. We conclude
with a discussion of the potential implications of this work.

5.2 Methods

The system that we consider is a protein that is free to move in a box with hard walls in the
presence of a substrate that is made of the same building blocks The box has a cubic shape and
a lateral size of 3 time the length of the protein. The substrate is in the middle of the box. We
model the chain as the linear, polypeptide-like heteropolymer, that we described in Chapter 2.
The conformational energy of the system is given by the following expression

E � Eintra � Einter
� NC

∑
i
� NC

∑
j �� i

Ci jSi j � NS

∑
j � �� i

Ci j � Si j � � � (5.2)

where the index i and j run over the residues of the protein, while j � runs over the elements of
the substrate, C is the contact matrix, defined in Eq. 2.2.

We start by imposing the template configuration, which should give information on the
structure of the protein and on the desired bound state (e.g. Fig. 5.1). From the mean field
expression for the entropy in Eq. 2.3 we expect a wider distribution for the protein-substrate
system, compared to the one of an isolated molecule. However, if the gap is still present,
then the folded-bound state should be the equilibrium conformation. This condition does not
exclude the case in which the interaction with the substrate is essential to keep the protein
in the native state. Because we want to focus only on the binding properties regardless of
the effect on the folding, we consider only a system with more intra-molecular than inter-
molecular contacts – in other words we use only compact proteins with a large fraction of
inter-molecular interactions.

In order to design the monomer sequence for the three different scenarios OO, OR, and RR
we performed Monte Carlo sampling on a range of monomeric sequences. For each different
scenario we applied the design process on a different subset of residues. In particular for case
OO we include all the residues of both the protein and the substrate, while for the others the
sampling is limited to the amino acids of the protein, while the structure of the substrate is
fixed.

Again we are interested in the equilibrium properties of the system, and we calculate the
free energy as function of the number of native contacts

Q � N

∑
i � j

�
C �i jCi j � (5.3)

38



5 Evolution of Protein Protein interaction

where C � is the contact map of the native state. However, we will need also to measure the
number of contacts with the substrate Qs to measure the binding affinity of the protein with
the substrate, and also to test whether the specific and random interactions can destabilize the
native state of the protein inducing unwanted rearrangement of the peptide chain.

5.3 Results

5.3.1 Design the binding scenarios

To study the dependence of the binding specificity on system size and temperature, we con-
sider a set of 4 different proteins with corresponding substrates. Each system was designed to
reproduce the conditions of the three scenarios OO, OR, and RR. In order to design the first
case we compute sequences of amino acids for the protein bound to the substrate, as shown
in Fig. 5.1.a for a protein with 72 residues and a substrate with 24 amino acids. In this case
the design program will optimize the sequence to minimize the energy of the contacts within
the chain and between chain and substrate. For the case OR, we impose the same target con-
figuration as before, but we limit the optimization to the amino acids of the protein, and we
assign a random sequence to the substrate. The final scenario is for non-specific binding, this
is achieved in two ways. First, we design a protein simply to fold into a given native structure,
with no optimization of the substrate-binding energy. Second, we expose the protein form the
OO and OR scenario to a random substrate without further design. It is important to stress that
in the design of the OO and OR, the intra-molecular bonds are optimized together with the
inter-molecular ones. In this way, we are able to construct model proteins that have the same
internal structure both in the bound and unbound states. However, it is also possible to design
structures that change upon binding. In Tab. 5.3, we list the amino-acid sequences that were
the result of the design procedure described above.

5.3.2 Free energy calculations

As a first check, we verified that the generated sequences do indeed fold into the respective tar-
get structure. We show only the calculation of the binding free energy for a proteins consisting
of 72 monomers (Fig. 5.1) as an example. In particular we consider the sequence OO (both
protein and substrate optimized) and the sequence RR, where the protein sequence has been
optimized to fold, but not to bind to a substrate, which has a random sequence. In Fig. 5.2 we
plot the free energy of the sequences OO and RR, as function of the number of native contacts
defined in Eq. 3.2. In each plot we distinguish between conformations that do and do not
touch the substrate. As is to be expected (see Fig. 5.2), the binding free-energy is much larger
in the case where both the binding site and the substrate have been optimized (OO),compared
to the RR scenario. Moreover, in the case of the random interactions (RR), the free energy
minimum is reached before all contacts with the substrate are satisfied. To characterize the
system in this regime, we computed the free energy, F

�
Q � Qs � , as function of both the number

of native contacts and the number of non-specific contacts with the substrate. This should al-
low us to discriminate between conformations that are specifically and non-specifically bound
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to the substrate. In Fig. 5.3.a and 5.3.b we plotted F
�
Q � Qs � for OO and RR, respectively.

The “funnel” shape of the surface in Fig. 5.3.a demonstrates that the sequence OO does fold
and sticks to the substrate in the designed way. In contrast, the free energy surface for the
sequence RR is flat at the bottom of the slope. This indicates that, in this case, the folded
protein does not have a unique bound state with significant binding free energy. So much so
that the presumed target state is not even favorable from a free-energy point of view. For the
other sequences that we studied we found that, in every case, the design process (OO,OR and
RR) determined similar free energy landscape. The OR scenario (not shown in the figures)
resulted in a free energy landscape similar to that obtained in the OO case, but the binding
strength was less. It is important to notice that in all scenarios the free chain retains the native
intra-molecular contacts, even in the unbound state. Ref. [43] discusses a different situation
where the substrate is able induce conformational changes.

Next, we consider the dependence of the binding strength on the size of the binding site.
In Fig. 5.4.a we plot the binding energy as a function of the size of the substrate for the three
scenarios (OO, OR and RR). The error bars represent the spread of the random interactions
given in Eq. 5.1 around the mean value (calculated at two sigma). From the interaction matrix
that we used, we get a mean interaction energy of around zero [3]. The figure shows that there
is a significant gap (more than 2σ ) between the binding energy in the case of designed binding
sites compared to that of the purely random case the designed energies and the boundaries of
the distribution. The gap is large enough to guarantee that the designed binding is energetically
favorable compared to the random case, even for the smallest substrate. As expected, the
binding specificity increases with the substrate size.

As mentioned in the introduction, the presence of an energy gap between specific and
non-specific binding is not a sufficient condition to guarantee specific binding at any given
temperature. To ensure specific binding of a given protein, there should exist a range of
temperatures that are low enough to ensure that the designed protein structure is stable, yet
high enough to guarantee that random (non-specific) interactions are not strong enough to
cause spurious bindings. As discussed in the introduction, it is not a priori obvious that such a
temperature window always exists. However, in the present case, it appears possible to satisfy
this condition. Fig. 5.4.b shows the free-energy difference between the bound and unbound
states of the chain in the native conformation for the cases OO, OR and RR. As can be seen
from the figure, the binding free energies behave more or less as the binding energies. In
particular, a significant gap between specific and non-specific bonding is maintained. This
holds both for the case where both protein and substrate have been optimized and even for the
case where only the protein has been optimized. 1

Clearly, the model used in the present study is highly simplified. Apart from the fact
that we used a rather crude lattice model for the protein, we only considered the effect of
binding energy on binding specificity. In reality, steric effects are at least as important and
should be taken into account in any more realistic study. It would therefore be unwise to try
to apply design calculations of the type described above to real protein systems. Nevertheless,

1Note that the definition of the binding free energy here is not yet system size independent. In order to correct for
this we could perform the same simulation with periodic boundary conditions or compute the concentration
of protein in the bulk.
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5 Evolution of Protein Protein interaction

some of the conclusions that we reach are likely to survive the transition to a more realistic
model. First of all, the existence of a temperature window where specific binding is possible, is
also expected in models that take steric repulsion into account. Secondly (and interestingly),
the present calculations suggest that binding sites that interact quite strongly with specific
substrates are unlikely to bind non-specifically to other substrates. In other words, the conflict
between specific interactions between small numbers of biomolecules and weak, non specific
interaction with all the rest, need not be a serious design constraint. This latter statement
should be qualified: as the number of distinct species increases, so does the probability that
at least one pair of molecules will, by accident, have a strong, non-specific interaction. This
will then result in an additional evolutionary pressure to keep non-specific protein-protein
interactions weak.

We note that the design of specific binding sites also plays a role in experimental schemes
to detect specific proteins [44]. In this case a clear differentiation of the binding affinity
between a substrate and proteins in solution is essential to isolate a particular molecule. As
before, this implies a temperature window in which non-specific bonds can be disrupted by
thermal fluctuations, whilst the proteins themselves and the specific bonds that they form, are
still stable.
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Size Scenario Sequence TF

27 OO
YDCFRPIDGWRLQEMCKPNECWK
NVEM GSLYQFCTH

0.2-0.5

27 OR
RQGCRDMDHIKWRELFKQSEVIK
TMEL YHYNGCNFP

0.2-0.5

27 RR
MDSCRWLDCQKIMEFGKWMENQK
WAER HVPWYFKTP

0.2-0.5

72 OO

NDCALCKNREFIDMKDPEWRVMRGY
DWVQMKQREWRLFKDNECIACKNPE
CTLCKYHEFIQMKDPEWPVMKH
GTFVTYHYSDWSLGHQNTGIACSS

0.2-0.5

72 OR

CNQSLRECMKDIFREWWHQGARNPFND
VGREMMKDGLREWCKQISPECAKQSLP
ESMKQIGREWFKDTAHNF
YCTWTYHMPVPLFHDVYKVITYNC

0.2-0.5

72 RR

GEQGDRKFLEQRNFKIIEMNSWHAIDMS
NWKLLEMNDPKICEQRGPRFCDQADPK
CLEMHQWKVIEMNSWRL
YCTWTYHMPVPLFHDVYKVITYNC

0.2-0.5

75 OO

NDMRPCDWKNIEMRCIDFKLAEGRLFQ
FKGIEMRLCDWKLNEMRCYQWKNSDM
PPCQWKSIEMRCVQFKLGEFPV
VQGSTVTGSAHTWHAYDAHCYTWHY

0.2-0.5

75 OR

NDGWSHMGRDREFWHCQFKDAELPCC
QVKAREIPCYMLKQTEFWHSMFRGAD
VWSYMLKAPEIWPCMLKQVEVPC
CYIYQHGGSNEMIKDKTTFTDRNNN

0.2-0.5

75 RR

NMQESAKRWNIMDEACKRFLHGQDHCR
PGYIFQECTKRWLNMDEASKRWNAMDE
STKRWSIMQEGCKPFLHGQDC
WTYHMPVPLFHDVYKVITYNCVIFE

0.2-0.5
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Size Scenario Sequence Tf

98 OO

YCMRDQFIRREWCHLCMKDDLGRKE
WCINCMKEDGIRKEWFNIGMREDLVS
KEWFLNFMKEDAGRKEWCNVCMKE
DTIRREWCVYCMKDQLGPSQWCP
PCPYTPGLTTSVYYIAFQSHIGTYHP
HANFPQHSALTQSMVNATFQHNV

0.2-0.5

98 OR

IWSKICDQCLEDMLNWRHFCFPCFEEM
NAWKKGDYVRGEDMTHWRHSPVAQS
DDMYAWKKGDAPSGEEMANWKKFCQ
HCLEEMNIWRKICYSCLEQMA
FNGTLTRRQYVTVIQYPFMCLRGYKV
PCIFNQTTPHDTRSIRYHPWHWV

0.2-0.5

98 RR

GMSIHQAYPELDWGNMKIKQHGREFEW
NVMKCKDFASECEFLAMNCRSSASDCDW
AVMKCKDAGRECEWVNMKCKQTYPELE
WNGMRIKQHIPDLDWF
FNGTLTRRQYVTVIQYPFMCLRGYKV
PCIFNQTTPHDTRSIRYHPWHWV

0.2-0.5

Table 5.3: Sequences designed in the three different evolutionary scenarios and for the dif-
ferent protein-substrate sizes. The parameters used where, the design temperature
βD

� 20 and the permutation temperature βP
� 24 in the range. Each letter repre-

sents a different amino acid. The letters in bold are the amino acids of the substrate.
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(a) (b)

(c)

Figure 5.1: Spatial arrangement of the 72 amino acid chain with its 24 residues substrate, for
scenario OO (a), scenario OR (b), and scenario RR (c).

44



5 Evolution of Protein Protein interaction

0 20 40 60 80 100 120

Q
0

5

10

15

20

25

30

∆F
(Q

)/
kT

Non Touching States
Touching states

(a)

0 20 40 60 80 100 120

Q
0

5

10

15

20

∆F
(Q

)/
kT

Non Touching States
Touching States

(b)

Figure 5.2: Plots of the free energy F
�
Q � of the sequences OO (cooperative evolution) (a) and

RR (independent evolution)(b), as a function of the number of native contacts Q
(Eq. 3.2), at T � 0 � 15. States that touch the substrate (squares) have been plotted
separately from those that do not (circles). The curve corresponding to the touch-
ing states is longer, because in the definition of the order parameter we take into
account also the native contacts with the substrate. All data were obtained with a
combined parallel tempering and umbrella sampling simulation.
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Figure 5.3: Plots of the free energy landscape F
�
Q � Qs � of the sequences OO (evolution for

binding)(a) and RR (random interaction)(b), as a function of the number of native
contacts Q (Eq. 3.2) and the number of contact with the substrate Qs, at T � 0 � 15.
The flat end of the slope in the second plot indicates that each bound state is equiv-
alent in free energy to the unbound states. While in the first plot the funnel shape
demonstrates that cooperative evolved sequence has a clear free energy advantage
in the specific bind. The line separated form the surface represents the states that
are not touching the substrate (Qs

� 0), and gap is caused by the poor sampling of
the intermediate states.
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Figure 5.4: Plot of the size dependence of the Binding Energy (a) and of the binding free en-
ergy (b). The error bars in the in (a) represents the 2σ width of the distribution
of interaction given by the random energy model. The triangles represent the in-
teraction of the proteins designed for the OO and OR scenario, with a random
substrate [6].
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6 Refoldable proteins and substrate
interaction

Loosely speaking, folding is the process by which proteins explore their conformational space
and find those conformations that have the lowest free energy. Many proteins can fold into
more than one structure. The relative stability of these structures can often be changed by
external agents such as the absorption of light, the binding to a substrate or the hydrolysis of a
fuel molecule such as ATP.

In this chapter we explore the refolding of model proteins that is caused by binding to a
substrate. To this end, we used the approach described in Chapter 2 to design protein-like
lattice heteropolymers that have different stable conformations depending on whether they are
bound to a substrate or free in solution. We considered three different systems that differ in the
size of the interacting units. For small substrates, we observe that an increase in temperature
induces the protein to unbind from the substrate, yet remain in its native state. For larger
protein-substrate interaction sites, the bound conformation remains folded while the unbound
conformation is denatured. We also considered the case where the unbound protein does not
have a well-defined native structure. We found that, in that case, binding to a specific substrate
could induce folding in the disordered protein.

6.1 Introduction

Proteins can change their conformation depending on their physical or chemical environment.
A common example of such a structural change is unfolding, which happens when the protein
is heated or exposed to denaturing substances. Denaturing is not a particularly subtle confor-
mational change as the resulting state of the protein is disordered. However, in many cases
proteins respond to an external stimulus by changing their spatial arrangement from one spe-
cific conformation to another. Driven conformational changes are thought to be at the root of
many of the tasks that proteins perform. This is the reason for why proteins are often compared
to nano-machines. Examples of proteins that perform a task by changing their conformation
are motor proteins that generate forces or transport materials from one part of a cell to another.

The motor action is usually induced by the binding and subsequent hydrolysis of a “fuel”
molecule, such as ATP. The energy that is released during the burning of this fuel is used to
induce a large-scale rearrangement of the protein backbone. This, in its turn, causes the protein
to move with respect to the substrate to which it is bound. Whilst this general picture of motor
action is generally believed to be correct, the details of the motor action are, at present, largely
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6 Refoldable proteins and substrate interaction

unknown.
Several models have been proposed to account for the mechanism of molecular-motor ac-

tion. We will not review these models but rather describe some common features. The motor
action is usually assumed to involve changes in the tertiary structure of the protein that is
represented as a set of springs and links that connect larger structural units. When the APT
is hydrolyzed, some of the physical links are cut and the energy stored in the springs force
the protein to move to a new equilibrium conformation. In a number of cases, this picture
could be supported by structural data derived from x-ray crystallography. In these experi-
ments, the proteins are “frozen” during different stages of their power cycle. The resulting
protein conformations are thereupon crystallized and studied by x-ray crystallography. In this
way, conformational changes in the protein could be studied in detail. Clearly, this approach
yields insight in the sequence of allosteric transitions that are involved in the motor action of
proteins. However, necessarily, the technique neglects the contribution of thermal fluctuations
and focuses on those parts of the molecule that are highly ordered. Much less is known about
the evolution of disordered domains in the protein or about the role that fluctuations play dur-
ing the power cycle of a motor protein. That fluctuations can be very important follows, for
instance, from a recent study by Hawkins and McLeish [45] who proposed a coarse-grained
model for E-coli lac and trp repressor. The binding of this repressor to its substrate can be
strongly influenced by the binding of a second molecule to the repressor: even though this
second binding hardly changes the conformation of the repressor, it does affect the thermal
fluctuations in the molecule and this, in its turn, was shown to have a large effect on the
binding of the repressor to its substrate.

In the present chapter, we use simulations of a simple lattice model to explore the effect
of substrate binding on the structure and fluctuations of model proteins. Our approach is as
follows: we consider pairs of proteins and substrates. The substrate are designed such that the
binding will induce a conformational change in the protein. For simplicity, we assume that the
interactions between the monomeric units of the protein and the substrate are similar to the
intramolecular interactions between amino acids that belong to the same protein. In the context
of our lattice model, this means that the amino-acid-substrate interactions are determined by
the same interaction matrix as the intra-molecular interactions of the amino acids belonging
to the same protein.

6.2 Methods

The model system that we consider is similar to the one discussed in the previous chapter,
namely a protein confined in a cubic box in the presence of an immobile substrate. The
conformational energy is defined by Eq. 5.2.

We start by designing simultaneously the sequence of amino acids to be compatible with
both the initial (unbound) state (A) and the final bound state (B). Moreover, we impose that the
most stable structure in the bound state is not the same as in the unbound state. As before, the
design stage involves a Monte Carlo sampling over amino-acid sequences. The acceptance of
a sequence-changing trial move is determined by three criteria: the first two are Metropolis-
like rules that ensure that sequence changes that greatly increase the energy of either state
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Figure 6.1: Spatial arrangement of the chain in the structures used to test the model
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Figure 6.2: Spatial arrangements of the chain used to study the folding upon binding of a
random domain
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A or state B (or both) are rejected. The third acceptance criterion is related to the structural
heterogeneity of the amino-acid sequences. This rule (Eq. 2.14) was described the preceding
chapters.

Once a suitable sequence has been generated, we focus on the equilibrium properties of the
system, and calculate the free energy as function of the number of native contacts (Eq. 3.2),
and of the number of contacts with the substrate Qs. In this way, we measure how the increase
in the number of contact with the substrate correlates with the change in the native structure
of the chain.

In the case where we studied protein folding induced by the substrate, we had to generate
sequences that were in the coil state when unbound. We found that if we increased the config-
urational design “temperature” to a value that would generate random coil states in solution,
then we would also find disordered bound states, yet when we chose a lower configurational
temperature, the proteins in solution would typically fold into some compact state. To resolve
this problem, we devised a scheme to control the randomness of the protein sequence. We ran-
domly selected a certain percentage of amino acids that could evolve without constraints. In
practice the design algorithm would randomly change their identity when selected for a muta-
tion move, regardless of the Metropolis acceptance criteria. These amino acids would typically
be irrelevant for folding. We found that, in this way, it was possible to design proteins that
would be in the random coil state when unbound, yet in an ordered state when bound.

6.3 Results

To study the influence of a substrate on the equilibrium properties of our model protein we
considered three different conformational changes induced by substrates of different sizes. In
Fig. 6.1 we show the target structures between which the transitions occur: 1 � 2, 3 � 4, and
5 � 6. In addition we studied the case of a protein that does not fold into a native state when
it is in solution. However, upon binding the molecule assumes a designed target structure
(see figure 6.2). This model could be relevant for the understanding of the role that random
domains play in protein binding. The same design procedure was applied in every case. We
therefore limit our explanation to design of the sequence that, upon binding, undergoes a
conformational change from structure 1 (Fig. 6.1a) to structure 2 (Fig. 6.1b). Following the
procedure explained in chapter 2 we optimize the conformational energy of the chain in both
structure 1 (see Fig. 6.1.a) and 2 (see Fig. 6.1.b).

After eight independent simulations (typical length per run: 109 MC trial moves), we
collect those sequences for which structure A is most stable in solution whilst structure B
is most stable when bound. In all cases, we found at least one sequence that satisfied these
constraints. In Tab. 6.2 we show the sequences that we selected to study the conformational
changes shown in figure 6.1.

The design procedure is slightly different in the case where the molecule is in the disor-
dered state in solution and folds upon binding (Fig. 6.2). Following the procedure explained in
the Methods section above, we designed the protein in the bound state with different percent-
ages of random amino acids ranging from 0% to 60%. The results are a group of sequences
D0-D60 shown in Tab. 6.3.
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RHFSYTRRGMDDRCWVCDACVMCT
PHWLEYNKILENPKIMEQRKWGEDP
KFAEQNKI MSQ

Sequence A

LEASPSKIREGYPGRTRDFYWCKDLEC
MNCKILECNWCKIRECMHFRDPDF YWCKQVECM-
NCKV VATGQHQH

Sequence B

PRDGLWGRDQPRDFMIFRDYMKDCLW
CKEWNKECMICRENNKDCLWCK ENMKECMICK-
EWFKDCLWCKEFNKECMI
CREN PRQFMIGHQHHHPGLVTSTYAVVAAVT
SYYPSQAHVGSTQ

Sequence C

Table 6.2: Sequences generated for the test structures (Fig. 6.1). Each letter represents a dif-
ferent amino acid [3]. The letters in bold are the amino acids of the substrate

MKCREWLKDREIMK DCEWNRFREPLKD
HQITVMFPWQCYCTSAYGDVVIYNSNQFAGTH

D0

MKCREWLKDREIMK DCEWNRFREPLKD
HQITVMFPWQCYCTSAYGDVVIYNSNQFAGTH

D6

MKCREWLKDREIMK DCEWNRFREPLKD
HQITVMFPWQCYCTSAYGDVVIYNSNQFAGTH

D12

CRNPECFKQWEGCK MRECIKDWELGKM
PDVAFHHSCQNTNYSTAWQGVFILTLDRYHMP

D18

KMIPWECMNDWCKM RLWERMIEWDFPR NY-
CFCKEADFVILYNSTQHGHGRQSTVAALKT

D24

GECPRELWRWRFRE MCKDPEFVKQFNM DMIYIK-
TATHCACQDSVPNGSLNYHQKLYGIW

D30

GECPRELWRWHIRE MCKDPEHVKQFNM
DMISIKFNTKCSCYDLSFNGAGPQAQHTVYVW

D36

GGCPRELWRWRFKE MCKDPNHVNEFNM DMISIK-
TATTCACQDYIWNFLGKQSQHYHYVP

D42

GGCPPELWDMQFRR WHDDPNEVEHFNI KMISIK-
TATGCWCYRHVLNFAMYQAQYKSKVL

D48

GGCPPELWDMQFRR WHDDPNEVEHFNI KMISIK-
TATGCWCYRHVLNFAMYQAQYKSKVL

D54

GGCPRELWDMHFRE WCKDPNWVKHFNI RMI-
AIKGSPTCYCQKVALDFSQEYAYNMTMVL

D60

Table 6.3: Sequences generated for the study of binding random domain proteins (Fig.6.2).
Each letter represents a different amino acid [3]. The letters in bold are the amino
acids of the substrate
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6.3.1 Free energy calculations

Having designed the sequences for the structures depicted in figures 6.1 and 6.2, we verified
that the generated sequences do indeed fold into the respective target structures in both the
bound and (where applicable) the unbound states. In Fig. 6.3.a-6.5.a, we plot the free energy
of sequences A,B,C respectively, as a function of the number of native contacts Q (Eq. 3.2)
at a temperature of T � 0 � 1. In each plot we distinguish between conformations that do and
do not touch the substrate. A common feature of the three proteins is that they fold into dif-
ferent target structures, depending on their binding state. For example, in Fig. 6.3, the lowest
free-energy conformation in the bound state corresponds to structure 1 ( Q � 18 ), whilst
in the unbound state structure 2 ( Q � � 12 ) has the lower free energy. The same applies
for sequences B and C that were designed for the transitions 3 � 4 and 5 � 6 respectively.
This result demonstrates it is feasible to design model proteins that undergo conformational
changes upon binding to a substrate. In addition, in Fig. 6.3 the barrier to go from confor-
mation 2 ( Q � � 12 ) to conformation 1 ( Q � 6 ) is higher for the unbound conformation
than for the bound conformations. This suggests that binding is likely to precede refolding.
Additional evidence that this may be the case comes from the shape of the free energy surface
F
�
Q � Qs � that is a function of the number of native contacts Q and of the number of contacts

with the substrate Qs (see Figs. 6.7.a-6.9.a). For instance, Fig. 6.7.a shows that when the pro-
tein has an order parameter close to that of the unbound native state (conformation 2), the
bound states with high values of Qs are not favorable. Rather, the free-energy landscape for
refolding is fairly flat except in the vicinity of the target state (1). This suggests that the protein
is first weakly absorbed on the substrate. From then on refolding and increased binding1 to
the substrate occur together.

Let us next compare the behavior of the different substrate sizes and consider the effect
of temperature. To test the thermal stability of the different conformational changes, we in-
crease the temperature until we reach a regime where the native state of the free protein is in
equilibrium with the native bound conformation. For small substrates ( 1 � 2 and 3 � 4 )
the temperature increase will favor the unbound conformation, without denaturing the protein.
The situation is different for the transition 5 � 6, where the size of the substrate is larger. In
this case, there is a temperature region where the bound state still folds into the designed struc-
ture, whilst the unbound state is denatured. Hence in this case the substrate acts to increase
the thermal stability of a particular protein conformation.

Note that an induced conformational change such as the one from 1 � 2 could act as a form
conformation-mediated signal transmission. The interaction of a protein with a small molecule
or small binding site, induces a substantial rearrangement of the chain, which changes the
nature of the exposed surface of the protein. It would interesting to study the nature of this
signal transmission more extensively, such a study would fall outside the scope of this thesis.

Let us finally consider the case of a protein coil that folds into a compact state when binds
to a substrate. In Fig. 6.6.a-b we plot the free energy of, respectively, the free and bound states
of sequences D, as function of the number of native contacts Q (Eq. 3.2). Not surprisingly,

1Note that the definition of the binding free energy here is not yet system size independent. In order to correct for
this we could perform the same simulation with periodic boundary conditions or compute the concentration
of protein in the bulk.
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Figure 6.3: Plots of the free energy F
�
Q � of sequence A as a function of the number of native

contacts Q (Eq. 3.2), at T � 0 � 10(a) and at temperature T � 0 � 30(b). States that
touch the substrate (squares) have been plotted separately from those that do not
(circles). The curve corresponding to the touching states is longer, because in
the definition of the order parameter we take into account also the native contacts
with the substrate. All data were obtained with a combined parallel tempering and
umbrella sampling simulation.
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Figure 6.4: Plots of the free energy F
�
Q � of sequence B as a function of the number of native

contacts Q (Eq. 3.2), at T � 0 � 10(a) and at temperature T � 0 � 30(b). States that
touch the substrate (squares) have been plotted separately from those that do not
(circles). The curve corresponding to the touching states is longer, because in
the definition of the order parameter we take into account also the native contacts
with the substrate. All data were obtained with a combined parallel tempering and
umbrella sampling simulation.
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Figure 6.5: Plots of the free energy F
�
Q � of sequence C as a function of the number of native

contacts Q (Eq. 3.2), at T � 0 � 10(a) and at temperature T � 0 � 50(b). States that
touch the substrate (squares) have been plotted separately from those that do not
(circles). The curve corresponding to the touching states is longer, because in
the definition of the order parameter we take into account also the native contacts
with the substrate. All data were obtained with a combined parallel tempering and
umbrella sampling simulation.
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Figure 6.6: Plots of the free energy F
�
Q � of sequences D0-D60 (0-60% of random amino

acids) as a function of the number of native contacts Q (Eq. 3.2), at T � 0 � 10.
States that touch the substrate are plotted separately (b) from those that do not
(a). The gap between the curves does not have a physical meaning, and has been
introduced only to separate the free energies of sequences that folds in the bulk
from the one the do not. Note that all proteins fold upon binding.
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above a certain threshold of “randomness” (30%) the unbound chain does not have a compact
native state. However we found that even in the case where 60% of the amino acids were
chosen at random, the substrate-bound state would still fold into the native state. Of course,
these numbers should be treated with caution as the quantitative results of the simulations are
expected to be model dependent. The main message of Fig. 6.6.a-b is that a disordered protein
(or, for that matter, a disordered protein domain) can be involved in selective binding and, in
the process, fold into an ordered conformation. Although we have not tested directly whether
protein protein can be mediated by an apparently random domain, the present results strongly
suggest that this is the case.

To summarize, we have used a lattice model to describe the conformational changes in
protein systems. This particular phenomenon is often triggered by the interaction of the protein
with an external agent, that we model as substrate fixed in the simulation box. The first result
was the successful design of a system with two equilibrium conformations, one for the bound
state and the other one for the free state. We then computed the free energy of the proteins
at different temperatures – distinguishing between touching and non-touching conformations.
The behavior at low temperature was mainly characterized by a strong preference for the
bound states 1, 3 and 5. When the temperature of the system was increased, the free energy
of the unbound states decreased because of the increased importance of translational entropy.
However the response of the system, was not simply a gradual denaturation of the proteins.
Rather, it depended on the number of interactions with the substrate. At higher temperatures
the inter-molecular interactions of small substrates ( 1 � 2 and 3 � 4 ) were not strong enough
to compensate for the increase of the translational-entropy term, however the intra-molecular
bonds were still stable and they could keep the protein in the native state 1 and 3 respectively.
This picture starts to change when we consider a larger substrate. In this case the strength of
the intra-molecular and inter-molecular interactions were comparable. As consequence, the
translational-entropy term was never strong enough to favor the unbound states, before the
protein was unfolded.
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Figure 6.7: Plots of the free energy landscape F
�
Q � Qs � of sequence A as a function of the

number of native contacts Q (Eq. 3.2) and of the number of contacts with the sub-
strate QS, at T � 0 � 10(a) and at temperature T � 0 � 30(b). All data were obtained
with a combined parallel tempering and umbrella sampling simulation.
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Figure 6.8: Color Online) Plots of the free energy landscape F
�
Q � Qs � of sequence B as a

function of the number of native contacts Q (Eq. 3.2) and of the number of contacts
with the substrate QS, at T � 0 � 10(a) and at temperature T � 0 � 30(b).
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Figure 6.9: Color Online) Plots of the free energy landscape F
�
Q � Qs � of sequence C as a

function of the number of native contacts Q (Eq. 3.2) and of the number of contacts
with the substrate QS, at T � 0 � 10(a) and at temperature T � 0 � 50(b).
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7.1 Introduction

Misfolding of proteins in living cells may lead to serious malfunctioning of the cell machinery
and even premature cell death. The problems are not only related to the fact that misfolding
disrupts the normal activity of the protein itself, it can also induce uncontrolled protein aggre-
gation as observed in diseases such as Alzheimer or BSE. To prevent such cellular disasters
from happening, a healthy cell contains protein complexes (“chaperones”) that assist many
proteins in finding their correct native structure. Interestingly, a single chaperone complex
can assist the folding of a variety of proteins, with quite different amino-acid sequence. This
means that, although the chaperone specifically targets misfolded proteins, its action is not
sequence-selective. An interesting example of such a specific but not selective chaperone is
the GroEL/GroES complex. This complex has a cage structure in which it can capture mis-
folded proteins. The chaperone then makes such a misfolded protein go through a number of
refolding cycles until it reaches its native state. This process is quite subtle because the chap-
erone must distinguish a misfolded state from a native state. As chaperones can refold proteins
with different sequences, the mechanism cannot rely on a selective protein recognition process
to identify the native state.

In their 1998 review, Sigler et al. [46] propose the following scenario for GroEL chap-
eronin action (Fig. 7.1), based on the available experimental evidence: initially the GroEL
complex is in an “open-barrel” state, thus exposing a hydrophobic surface to which the target
proteins can bind. The next step is an ATP-driven capping of the GroEL barrel by the GroES
cap. The misfolded protein is now trapped inside the protein complex, the inner surface of
which is mainly hydrophilic. The final step consists of the hydrolysis of the ATP and the
release of the cap. At this stage the protein is presumably released in its native state. Inter-
estingly, the GroEL complex has a symmetric double barrel structure and, after the first barrel
releases its protein, the other barrel is ready to start refolding the next protein. The mechanism
by which the chaperonin helps the misfolded protein to reach its native state is still matter of
debate. A possibility is that the chaperonin simply captures misfolded protein and keeps them
isolated from the rest of molecules in solution until they have had time to fold spontaneously
into their native structure. But recent models suggest a more active role of the chaperonin.
Jewett et al. [47] proposed a model for the chaperonin cavity, where the internal walls of the
cage are designed to have a weak attractive interaction with the hydrophobic residues of the
protein. In their simulations Jewett et al. found that, by a judicious choice of the strength
of the attractive interactions, they could greatly enhance the refolding rate of model proteins.
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Figure 7.1: Schematic representation of the current interpretation of the refolding cycle of the
GroEL/GroES chaperonin complex. The cycle consists of five steps. The overall
duration of one cycle is approximately ~15s. During the first step the misfolded
protein is trapped on the rim of the open cavity. During the subsequent two steps,
the cage closes and the protein is assumed to refold. During these steps, some
seven molecules of ATP are hydrolyzed to induce the conformational change, and
another seven bind to the lower cavity to prepare it for the next encapsulation. The
final step corresponds to the release of the target protein ( folded or misfolded) and
the encapsulation of the next target in the lower chamber.
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This high refolding rate is presumably due to a partial adsorption of the protein on the surface
of the cavity – the partial adsorption lowers the barrier to go from a misfolded state to the
native state. In other words: the action of the chaperonin is mainly to assist the unfolding of
non-native states, rather than to actively fold into the native state.

In the present chapter, we report simulations that lead us to propose an alternative unfold-
ing mechanism that is effective, yet sequence-unspecific. Our model provides an interesting
rationale for the double-barrelled structure of the GroEL complex.

In the scenario that we propose, the central step in the refolding process is a translocation
of misfolded proteins from one barrel of the GroEL complex to the other. Such a translocation
may be possible because there is a hole connecting the two barrels of the chaperonin complex.
In fact, crystallographic studies suggest that the chaperonin complex has a well-defined struc-
ture, except for a fairly large ( � 30Å ) “hole” between the two barrels [46]. However, the
hole in the X-ray structure does not mean that there are no amino acids in this region but only
that they are disordered and highly mobile. Low resolution small-angle neutron scattering
experiments [48] suggest that there is, in fact, a high density of disordered amino acids in the
vicinity of the central hole. Yet, this does not preclude translocation through this region. In
a different context [49] it is well known that disordered protein filaments near a translocation
pore do not close such a pore but rather play an important role in adding selectivity to the
translocation process. We assume that the something similar happens in the GroEL complex:
there is a hole between the two barrels, but its effective diameter is less than 30 Å.

The efficiency that a translocation based chaperon can achieve in removing misfolded
proteins from the solution is higher that in case of previous models. In fact if a first refolding
cycle is not successful that the misfolded protein is released in solution and through diffusion
should reach the other chamber of the chaperon which is in the trapping mode. We can give
an upper limit to the probability that a just released protein will actually reach the other open
chamber after a long time and this is given by [50]

P � � r
d � kr

kr � 4πDr �
where r is the radius of the trapping chamber ( � 45Å ), d is the starting distance ( � 160Å ),
kr is the association reaction rate, and D is the diffusion constant of the protein. If we consider
the case of a diffusion limited reaction, then we can reduce the probability to the ratio between
the r and d which in the case of the chaperon is � 0 � 3. This implies that in best scenario only
30 % of the misfolded proteins will rebind, while a translocating chaperon will have much
higher probability of keeping the misfolded molecule away and try the necessary refolding
cycles. We still need to demonstrate that such a small hole can play a crucial role in protein
refolding. This is the central question that we address by simulation.

Our simulations show that the active confinement of a (misfolded) protein in a small hy-
drophilic cage is enough to cause it to translocate rapidly to the other (open) barrel. The
translocation process will break any pre-existing compact structures. We find that, as the
translocation proceeds, the protein refolds in the open barrel. In fact, this refolding provides
an important contribution to the thermodynamic driving force for the translocation. There ex-
ist other examples of such a translocation-plus-refolding processes. One is the synthesis of a
polypeptide in the Ribosome. Using a lattice model similar to the one we employ, Morrissey
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et al. [51] showed that a protein that is extruded gradually from the ribosome folds much faster
than from its fully denatured state. As the protein refolds in the open barrel of the chaperone
complex, it need not end up in its native state. However, as the surface of the open barrel is
predominantly hydrophobic, it has the tendency to trap misfolded proteins, but let correctly
folded proteins escape.

Modelling of the GroEL complex is greatly facilitated by the fact that we know that its
action is not sequence specific. This implies that the essence of the action of this chaperone
can be represented by a model that can describe protein (mis)folding and the interaction of
poly-peptides with heterogeneous protein surfaces. To this end, we use a lattice model to
simulate the poly-peptide and the chaperone cage. The building blocks of both the poly-
peptide and the chaperone cage are amino acids with interaction parameters as derived by
refs. [52, 53].

Although this lattice model provides only a very crude representation of a protein in a
chaperone cage, it retains important characteristics such as the amino-acid heterogeneity and
the foldability of the protein chain. In our simulations, we design an artificial protein that folds
into a given target structure. We then study the behavior of this model protein in the chaperon
cavity and we compute the free-energy barrier that the protein must overcome in order to move
from one chaperone barrel to the other.

7.2 Methods

We consider a lattice protein and a model chaperone in a cubic simulation box with hard walls.
The lateral size of the simulation box is three times the contour length diameter of the protein.
In the middle of the simulation box we placed a cubic “chaperone” cage (Fig. 7.2) with a
lateral size of 5 lattice units. The volume of this cage is large enough to contain the protein in
a compact (but not necessarily native) state.

We model the protein as a linear heteropolymer, living on a lattice. The amino-acids of the
chain have nearest-neighbor interactions. The conformational energy E of the system is given
by the following expression

E � Eintra � Einter
� NC

∑
i
� NC

∑
j �� i

Ci jεi j � NS

∑
j � �� i

Ci j � εi j � � � (7.1)

where Eintra is the total interaction among the amino acids in the protein and Einter is the
binding energy between the protein and the walls of the cage. The indices i and j run over the
residues of the protein, while j � runs over the elements of the cage, C is the contact matrix,
defined in Eq. 2.2, and ε is the interaction matrix. For ε we use the 20 � 20 matrix derived with
the method of Betancourt and Thirumalai [52] from the matrix determined by Miyazawa and
Jernigan [53] on the basis of the observed frequency of contacts between each pair of amino
acids. The matrix ε � has some inconsistency in reproducing the hydrophobic and hydrophilic
nature of the amino acids because it is not straightforward to estimate the effective number
of interaction between water molecules and the residues of a real protein in the native state.
Betancourt and Thirumalai proposed to rescale all the values in the matrix with respect to the
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interaction with the amino acid Thr in the following way

εi j
� ε �i j � ε �Thr � Thr � ε �Thr � i � ε �Thr � j �

where ε � is the interaction matrix calculated by Miyazawa and Jernigan. The choice of Thr
is justified because it gives the best correlation between experimental hydrophobicities and
the self-interaction term εThr � Thr � 2. Although these interaction energies are strictly speaking
neither energies nor free energies, they do provide a reasonable representation of the hetero-
geneity in the interactions between different amino acids.

We note that the chaperone cage is modelled as a rigid object and hence Eq. 7.1 does not
include the interactions between the amino acids that form the cage.

7.2.1 Design of the folding and of the cavity coating

To design a lattice protein that will fold into a specific conformation, we use the approach
described in Chapter 2. In this approach, we sample sequences for a given conformation, rather
than conformations for a given sequence. The basic trial moves are single point mutations. As
in the conventional Metropolis scheme, the acceptance of trial moves depends on the ratio of
the Boltzmann weights of the new and old states. However, if this were the only criterion,
there would be a tendency to generate homo-polymers that have a highly degenerate ground
state, rather than a chains that fold selectively into a desired target structure. To ensure the
necessary heterogeneity, we impose the following additional acceptance criterion

Pacc � min �� � 1 � � Nnew
P

Nold
P � Tp � �� �

where Tp is an arbitrary parameter that plays the role of a temperature, and NP is the number of
permutations that are possible for a given set of amino acids. NP is given by the multinomial
expression

Np
� N!

n1!n2!n3! � � � (7.2)

where N is the total number of monomers and n1 � n2 etc are the number of amino acids of type
1,2,. . . . While sampling the sequence space with a Monte Carlo scheme, we keep the temper-
ature ( TP ) associated with this quantity high. In doing so we generate an heterogeneous com-
position of amino acids. The importance of sequence heterogeneity for the design of specific
structures is confirmed in our simulation, as it allows us to design hetero-polymer sequence
that have a non-degenerate native state. There is another, subtler, meaning of the “tempera-
ture” associated with the structural heterogeneity: it also represents the “frustration” imposed
on protein design by the fact that a protein lives in the presence of many other molecules to
which it should not bind unspecifically. By increasing this “frustration” temperature, we make
it less likely that the protein will form an undesired, specific bond to any of the other proteins
in the system. During a Monte Carlo run of several million cycles, a large number of distinct
sequences are generated. The sequence S � with the lowest energy is assumed to be the best
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candidate to fold into the native state. The energy of a given lattice polymer depends on its
conformation.

ENative
� ∑Ci jε �i j � (7.3)

In this work we used this scheme to design a lattice heteropolymer to fold to a given target
structure. During the design process we do not take in to account any interaction with the
cage. In other words we consider only the intra molecular interaction term in Eq. 7.1.

In order to design the interior of a chaperone, we have to mimic the hydrophilic or hy-
drophobic nature of the cage, while excluding any sequence selectivity. To this end, we em-
ploy the approach used in refs. [47, 54] to make a totally structure-less cage wall. To represent
a strongly hydrophobic surface, we select the amino acid that has the largest average attraction
with all other amino acids. For a hydrophilic surface we select the amino acid with the largest
average repulsion. That is, we selected from the interaction matrix the amino acids Ir with the
strongest average repulsive interaction and Ia with the strongest attractive one:

Ir
� max � 1

20

20

∑
j � 1

ε1 j � � � � � 1
20

20

∑
j � 1

ε20 j �
Ia

� min � 1
20

20

∑
j � 1

ε1 j � � � � � 1
20

20

∑
j � 1

ε20 j � �
For the matrix that we used, the amino acid with largest average attractive interaction is Phe
with a value of Ia

� � 0 � 23, while the most repulsive is Arg, Ir
� 0 � 38. We also considered

a cage with a milder attractive interaction, because, as will be discussed below, a cage made
with Phe was so attractive that any protein is irreversibly absorbed on the inner surface of
the chaperone. To model a more moderate hydrophobic surface, we used Tyr which has an
average attraction strength of Ia

� � 0 � 16. We stress that, although the parameters of refs. [52,
53] are derived from experimental data, the interaction strengths in our model reproduce the
interactions between the amino acids of real proteins only qualitatively. This is no problem for
the generic model that we consider, but it would be inadequate for a quantitative description.

7.2.2 Folding

To explore the possible conformations of the lattice polymer, we use four basic Monte-Carlo
moves: corner-flip, crankshaft, branch rotation, and translation. The corner-flip involves a
rotation of 180 degrees of a given particle about the line joining its neighbors along the chain.
The crankshaft move, is a rotation by 90 degrees of two consecutive particles. A branch
rotation is a turn, around a randomly chosen pivot particle, of the whole section starting from
the pivot particle and going to the end of the chain. The translation is simply a displacement
of the center of mass of the protein of one lattice unit in a random direction.

We explore the equilibrium properties of the system by sampling the free energy as a
function of two order parameters. The first is the number of native intra-molecular contacts of
the protein in a given conformation

Q
�
C � � N

∑
i � j

C 	 1 

i j Ci j � (7.4)
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where C 	 1 

i j is the contact map of the reference structure, and Ci j is the contact map of the

instantaneous conformation. Only those contacts that belong to the reference structure con-
tribute a value � 1 to the order parameter. A second order parameter, Qs, allows us to study
the progress of the extrusion process. It is defined as the total number of residues that are still
in the cavity.

The quantity that we aim to compute is the free energy F as a function the two order
parameters. To compute F

�
Q � , we used the following relation:

F
�
Q � � � T ln � P � Q ��� � (7.5)

where F
�
Q � is the free energy of the state with order parameter Q and P

�
Q � is the histogram

that measures the frequency of occurrence of conformations with order parameter Q. In prac-
tice, a direct (brute force) calculation of this histogram is not efficient, as the system tends to
be trapped in local minima, especially at low temperatures. To solve this problem, we used
the Virtual-move Parallel-tempering (VMPT) scheme that is described in Chapter 3.

7.3 Results

To study the competition between the extrusion and the folding process, we consider a protein
(P-64) of 64 residues trapped inside a cubic cage of size 5x5x5 in lattice unit length with a hole
in the shape of a 3 by 3 cross in one of the faces (Fig. 7.2). The ratio between the accessible
volume and the volume of the protein for our model is around 1.95, which would correspond
to ratio between the volume of globular protein with a radius of gyration of � 27Å, and the

volume of the closed chamber in the GroEL/GroES complex ( � 170000Å
3

).
Following the scheme in the methods section, we designed the protein to fold, in the ab-

sence of a confining cage, into the target structure shown in Fig. 7.2.a. In Fig. 7.3 we show the
folding free energy of the unconfined P-64 (red curve) at T � TF � 2 where TF is the tempera-
ture at which there is equilibrium between the unfolded and the native states. The free-energy
profile illustrates that the protein has a strong tendency to fold into the target structure which
is characterized by a value of the order parameter Q � 81.

Let us now consider the successive steps in the chaperonin-assisted protein refolded, as
represented schematically in Fig. 7.6. In the initial conformation (1) the chaperonin is open
and exposes a hydrophobic rim that should attract misfolded proteins. We model this con-
formation of the chaperonin with an open cubic box of size 2x5x5, approximately half of the
closed one, surrounded by a repulsive outer layer 3x7x7 to avoid binding on the outside of the
rim (lower section of Fig. 7.2.a). The attractive internal lateral surface was represented by the
strongly attractive amino acid which is also a strongly hydrophobic Phe ( Ia

� � 0 � 23 ) whilst
a repulsive back surface was made of Arg ( Ir

� 0 � 38 ) which is strongly hydrophilic. In this
way we mimic the rim structure of the real chaperonin.

Our simulations show that this barrel cannot trap the protein in its native state, but it can
trap misfolded proteins. This can be seen in Fig. 7.3 where we plot the free energy surface
as function of the number of native contacts Q (Eq. 7.4). The free energy curve shows that
proteins in the native state ( Q � 81 ) outside the cage have a lower free energy than inside,
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a b c

Figure 7.2: Lattice model for GroEL-GroES complex. (a) The closed GroEL-GroES com-
partment is modelled as a cage of 5x5x5 lattice units (red). It is connected by a
hole (3x3 cross – blue) to the open barrel, modelled as a 2x5x5 box surrounded
by a repulsive outer layer 3x7x7 to avoid binding on the outside of the rim. The
attractive internal lateral surface was represented by the strongly attractive and
hydrophobic amino acid Phe ( average pair interaction API with the other amino
acids API � � 0 � 23kT Supplementary methods Eq.6) whilst a repulsive and hy-
drophilic back surface was made of Arg ( API � 0 � 38kT ). The ratio between the
volume of the cage and that of the 64-residue protein (purple) is around 1.95,
which typical for the values found in experiments. (b) Space-filling representation
of the X-Ray structure of the GroEL/GroES/ADP complex [46]. Colors represent
the type of surface: all hydrophobic amino acids (A,V,L,I,M,F,P,Y) are in yellow,
while the polar one (S,T,H,C,N,Q,K,R,D,E) are red. (c) Intermediate conforma-
tion during the extrusion process from the hydrophilic cage. If the inner surface of
the closed GroEL-GroES compartment was made of the mildly hydrophobic Tyr
(API � � 0 � 16kT ), extrusion did not take place.

68



7 Simple model for chaperon action

0 20 40 60 80
Q

0

5

10

15

20

25

30

F[
Q

]/
kT

Inside
Outside

Figure 7.3: Plots of the free energy F
�
Q � at T � TF � 2, as a function of the number of

native contacts Q (Eq. 7.4) for the conformation that have at least one amino
acid inside the open cage (black circles), and for the one free in solution (red
squares). The open cage is covered with the most attractive amino acids Phe with
API � � 0 � 23kT in the rim area, while for the hydrophilic back surface we used
Arg. For chain conformation close to the native state (Q � 45) there is not free
energy gain in the trapping indicating that those states can easily diffuse away.
However for the misfolded states there is a strong preference (up to 5kT ) to bind
to the rim.

whilst misfolded conformations (small values of Q ) prefer to stay inside and bind to the
hydrophobic rim (up to 5kT binding free energy). This is further demonstrated by the free
energy function of the total number of contacts Nc and of number of amino acids inside the
cavity Qs for states with no native contacts Fig. 7.5.a, this shows a strong preference for
trapped compact conformations. A similar behavior is observed also for states with a different
number of contacts over native contacts ratio Nc � Q (Fig. 7.5.b).We stress that our results
should not depend on the particular sequence of the target protein, because we use structureless
cage walls.

After a misfolded protein is captured, the GroEL/GroES complex closes (i.e. the barrel
gets capped) and we move to the actual translocation process (steps 2 and 3 in Fig. 7.6).
The extrusion takes place through the hole in bottom of the hydrophilic cage (see Fig. 7.2.a).
To model a hydrophilic cage, the walls of the cavity where coated with Arg, which in our
interaction matrix is, on average, a strongly repulsive as well as strongly hydrophilic amino
acid. In Fig. 7.7 we plot the free energy as function of the usual order parameters. The figure
shows that the lowest free-energy state corresponds to values of the order parameters Qs

� 0
and Q � 81, which demonstrate that the most favorable conformations is the chain folded
outside of the cage. Of course, the early stages of extrusion cost free energy, as the protein
must unfold, at least locally, to initiate the extrusion. Interestingly, the free-energy barrier for
extrusion is considerably larger for the native state of P-64 ( � 10KBT ) than for a partially
folded state ( � 4KBT ). This implies that the hydrophilic cage will preferentially expel non-
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Figure 7.4: Plots of the free energy landscape F
�
Q � Qs � at T � TF � 2, as a function of the

number of native contacts Q (Eq. 7.4) and of the number of residues inside the
cage Qs. The open cage is covered with the most attractive amino acids Phe with
an average contact strength of -0.23 in the rim area, while for the hydrophilic
back surface we used Arg. The states with the lowest free energy correspond
to conformation of the chain mainly outside the cage (high values of the order
parameter Qs) and in the native state (high values of Q). However the lower states
for non native conformation are inside the cage space. This indicate a binding
selectivity for misfolded conformations.
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Figure 7.5: Plots of the free energy F
�
Nc � Qs � of the trapping in the open cage state as function

of the number of contacts Ncand the number of residues inside the cage Qs com-
puted for states with no native contacts (Q � 0)(a). This free energy shows that
open cage has a strong attraction for highly misfolded states, and this is because
energetically they con open and bind strongly to the hydrophobic rim. (b) Free en-
ergy landscape F

�
Nc � Q � Qs � computed in the same conditions as before but now

function of the ratio between Ncand the number of native contacts Qfor Q � 0.
The states shown here represents conformations that have common bonds with the
native state (Nc � Q � 1). Even for this intermediate conformation the open cage is
attractive.
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Misfolded State
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Figure 7.6: Refolding process of the double-cage chaperonin. The First step is the trapping
of misfolded proteins in the open cage. The second step is encapsulation upon
binding of the GroES cap, and change of the internal wall from hydrophobic (red)
to hydrophilic (blue) (Fig. 7.2.a). At this point the extrusion process starts (7.2.b)
with two possible outcomes:a) the protein does not fold in the native state, b) it
does. If the case is a) then the protein goes through another round of extrusion.
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native conformations. Analyzing the structure of the (partially) extruded protein we found
that the chain is initially stretched across the hole but, as soon as a sufficient number of amino
acids are outside the cage, they fold again into a compact structure. The free-energy gain due to
refolding facilitates the extrusion process. During the extrusion process, the existing misfolded
structure is completely broken up and a new compact conformation is formed outside.

We stress that in the in our simulations, translocation was always much faster than refold-
ing of the proteins inside the chaperonin cage. Although folded state where observed inside
the cage (Fig. 7.7), on the timescale of a translocation event, we never saw complete refolding
inside the cage, whereas complete refolding was always observed as the end result of translo-
cation. This is illustrated by Fig. 7.8 where we compare the rate of intra-cavity refolding with
the rate of inter-cavity translocation. In a different context, it is well known that extrusion may
speed up protein folding [51].

In order to test whether repulsion inside the chaperonin cage is important for the extrusion
process, we repeated the previous calculations with a different (strongly hydrophobic) Phe
coating of the internal walls of the cavity. The plot in Fig. 7.9 shows the free energy profile
for extrusion from such a hydrophobic cage. As can be seen for the figure, the driving force
for extrusion has now been reversed: rather than expelling the protein, the cage sucks it in.
The attraction is strong enough to cause partial absorption and unfolding of the chain inside
the cage. This is not the case for a moderately hydrophobic surface (modeled by Tyr – average
interaction energy Ia

� � 0 � 16 ) where the native state is not disrupted by the absorption on
the inner walls (see Fig. 7.10). However, the attraction is strong enough to inhibit the translo-
cation process. Hence, for translocation to occur, the protein should initially be confined in
a hydrophilic cavity. This offers a rationale for the strong hydrophilic nature of the closed
cavity. When the protein refolds into the open barrel of the chaperonin complex (Fig. 7.6-4),
it need not end up in its native state. However, the surface of the open barrel tends to trap
misfolded proteins. In this way the refolding cycle can start again, with the capping of the
second cavity and the opening of the first. This refolding scenario has one attractive feature:
it offers a natural explanation of the double-barrel structure of the chaperonin, as it makes
it plausible that misfolded proteins are shuttled forwards and backwards between the barrels
until they reach the native state that can escape from the hydrophobic rim of the open barrel.
Moreover, as the barrier for translocation is higher for native states than for misfolded states,
native states that happen to be trapped in the GroEL/GroES complex stand a good chance of
surviving until the barrel opens again. Of course, the scenario that our simulations suggest is,
at present only a hypothesis. However, it should be testable. First of all, it should be possible
to verify that proteins can move through the equatorial plane of the GroEL barrel. Moreover,
we should expect that the translocation process will be very sensitive to the nature of the disor-
dered protein segments near the hole in the equatorial plane. Any chemical modification that
would block the hole should decrease the chaperonin activity of the GroEL/GroES complex.
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Figure 7.7: Plots of the free energy landscape F
�
Q � Qs � as a function of the number of na-

tive contacts Q and of the number of residues inside the cage Qs, computed at
T � TF � 2, where TF is the temperature at which there is equilibrium between the
unfolded and the native states. The states with the lowest free energy correspond to
conformation of the chain folded outside the cage ( Qs

� 0 and Q � 81), demon-
strating a preference for the extrusion plus refolding process. The colored lines
represents trajectories for the refolding plus translocation (dashed blue ) and for
the intra-cage refolding (red continuous). Although both possible, the first one is
much faster than the second. The cage is covered with the most repulsive amino
acids Arg with an average repulsive strength per contact of 0.38. The non-sampled
region correspond to conformations of the chain too compact to exist across the
hole.
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Figure 7.8: Comparison of the relative rate of intra-cavity refolding and inter-cavity translo-
cation. The degree of translocation is measured by the fraction of the protein that
has escaped form the original cage. In our simulations, we compute the root mean-

square of this fraction (

� � �
N � Qs � 2 � � N) over many trajectories. Similarly, we

quantify the degree of refolding by root mean-square � �
Q2 � � QMax. Here Qs is

the number of residues inside the cage, Q is number of native contacts, and QMax
is the number of contacts in the native state. Time is measured in terms of the num-
ber of MC steps. We chose the reduced temperature of these simulations slightly
higher than in the remainder of this work (T � TF � 2 rather than T � TF � 1 � 5).
Because otherwise even translocation would be too slow to be observed on the
timescale of the simulations. The figure shows that complete translocation occurs
on a timescale where intra-cage refolding is still imperceptible.
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number of native contacts Q (Eq. 7.4) and of the number of residues inside the
cage Qs. The cage is covered with the most attractive amino acids Phe with an
average repulsive strength per contact of -0.23. The states with the lowest free
energy correspond to conformation of the chain mainly inside the cage (high values
of the order parameter Qs) and not in the native state (low values of Q). This
indicates that the extrusion process has been reversed, and that the attraction is
strong enough to absorb the protein on the walls of the cavity.
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Figure 7.10: Plots of the free energy landscape F
�
Q � Qs � at T � TF � 2, as a function of the

number of native contacts Q (Eq. 7.4) and of the number of residues inside the
cage Qs. The cage is covered with the most attractive amino acids Tyr with an
average contact strength of -0.16. The states with the lowest free energy corre-
spond to conformation of the chain mainly inside the cage (high values of the
order parameter Qs) and in the native state (high values of Q). This indicates that
the extrusion process has been reversed, but the attraction is not strong enough to
cause unfolding of the protein as in the case of the strong attractive surface.
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8 Summary

“....I have invariably found that our knowledge, imperfect though it be, of variation
under domestication, afforded the best and safest clue. I may venture to express
my conviction of the high value of such studies, although they have been very
commonly neglected by naturalists.”
ON THE ORIGIN OF SPECIES by Charles Darwin

In this thesis we used numerical simulations to study the relation between different functional-
ities of a protein that are determined by the amino-acid sequence. In particular, we considered
conformational changes, protein-protein binding, and chaperone-aided protein folding. The
common link that connects these apparently different processes, is that they all involve an ex-
ternal perturbation of the protein. The order in which we presented the results of our research
represents the evolution from a local perturbation to the global refolding of the protein.

In the introduction and in chapter 2 we motivated the use of a lattice-heteropolymer model
to represent proteins. In particular, we argued that such a simple description provides a pow-
erful theoretical tool to understand the physics of intra and intermolecular interactions of pro-
teins and the effect they have on binding and folding. We reviewed the mean-field arguments
that are at the basis of our numerical protein-design strategy. In particular, we discussed how
foldable sequences can be selected by performing simulations at a design temperature that is
below the typical glass transition of the corresponding random heteropolymer.

In chapter 3 we described the numerical techniques used to compute the free energy land-
scape of the lattice proteins that we designed. The free energy was computed as a function of
several order parameters characteristic of the native state and of the process under study. In
practice, the free energy landscape of such system if often highly corrugated. In order to sam-
ple states separated by high free energy barriers, we devised a new algorithm (Virtual-move
Parallel Tempering ) that greatly increased the sampling efficiency.

In chapter 4 we used our design strategy to study conformational changes in a single pro-
tein. The mechanism by which driven conformational transitions in proteins take place is still
a matter of debate. The simplest picture stresses the analogy between molecular and macro-
scopic machines. In this picture, the biological molecules are supposed to consist of rigid
sub-units that are connected to each other through springs and notches. The folded state is
then a stressed state where some of the springs are compressed or extended. A conformational
change starts when the external agent disrupts some attractive interactions that were essen-
tial for the stability of the original conformation. The energy stored in the springs is then
released. One of the problems with this picture is that a sudden release of accumulated stress
in a chain molecule will, in general, be irreversible. This irreversibility lowers the efficiency
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of the molecular motor. In our model, instead, the transition is induced by an alteration of
the chemical properties of few amino acids. By natural or artificial (design) evolution it is
possible to control the free energy difference between the native state and a given secondary
target conformation. In the presence of specific external perturbations the free energy of this
secondary minimum can be lowered and become the most stable state. The system will then
naturally diffuse toward this new equilibrium conformation. The role of thermal fluctuations
becomes important because they allow the system to perform the transition from one structure
to the other one at a considerably lower energetic cost. A similar process, repeated cyclically,
could be responsible for generating the motion of motor proteins such as Myosin and Dynein.

The second step in our research was to characterize the role of a substrate on the refolding
of a protein. When designing protein-substrate interactions, we must consider two challenges.
The first concerns the design of a specific binding site on the surface of a protein that can
attach to the substrate. The second challenge is to design the response (e.g. refolding) of the
protein to the binding. Before going on to study how the binding could induce a conforma-
tional change, we focused on the problem of specific binding. The question can be briefly
summarized as follows: “How can proteins bind strongly to a small number of substrates,
yet weakly - if at all - to the large number of other biomolecules in the cell?”. The cellular
environment is highly crowded with thousands of different proteins species. The chances of
an occasional encounter are therefore very high. In chapter 5 we addressed this question by
looking at the influence of the binding on the folding free energy of different proteins and
substrates. The results of the simulations showed that occasional non-selective interactions
do indeed occur between the protein and the substrate, but the entropy cost was too high to
create stable binding, even at a temperature equal to a third of the folding temperature. This
is not the case for designed binding regions: these are able to bind strongly to their partner.
Our explanation is that there is no fundamental difference between intra- and inter-molecular
interactions, hence once the protein is in contact with the substrate they can be viewed as a
single protein. This is the reason why he same algorithm that was used to select a sequence
that would fold into a specific structure could be employed to design specific binding between
protein and substrate.

In chapter 6 we addressed the question how a substrate could influence the conformation
of a protein. To this end, we computed the free energy of the binding process, and we mon-
itored the change in the protein conformation for different sizes of the binding region. In all
cases, the structure of the free-energy landscape suggested that the first step of the binding
process involved a local unfolding of the initial compact conformation to increase the contact
with the substrate. Subsequently, the chain molecule would rearrange locally to reach the na-
tive structure corresponding to the bound state. The elements that we have collected so far
demonstrate the ability of model proteins to partially refold in new conformation, to specifi-
cally bind to few partners, and refold upon binding. Next, we focused on the role of random
domains on protein-protein interactions. Many proteins contain parts that are disordered and
highly mobile. Experimentally, it is difficult to investigate these random domains as they are
effectively invisible in X-ray crystallography. However, the fact that a domain has a random
conformation does not necessarily mean that it has no function. To illustrate this statement,
we designed a lattice-protein that would not fold in solution. We then introduced a substrate
that would preferentially bind the protein in a specific conformation. The simulations showed
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that the protein folds upon binding. This process is reversible, in the sense that the protein
reverts to its disordered state upon unbinding. The next question is whether our model allows
us to design a substrate that would help the protein to find the native state even after unbinding.
In practice, such substrates act as folding catalysts. They provide a binding region that, after
a successful folding event, would be freed to receive a new target. Such refolding machines
exist in nature and are known as chaperons. There are different classes of such complexes.
Generally, chaperons are believed to work as unfolding-refolding machines: in doing so, they
lower the barrier that the protein must overcome in order to escape from a local free-energy
minimum to reach the native state.

In chapter 7, where we focused on refolding properties of a fascinating subclass of chap-
erons, the double-barrelled chaperons or chaperonins. Such large protein complexes refold
non-native proteins. Initially, the target proteins are confined inside one barrel of the chap-
eronin complex. What happens inside the cage is still a matter of debate. Previous models
described the chaperonin as a cage with a special internal surface that would mildly bind a
wide variety of protein independently of their conformation. Computer simulations showed
that such a chaperonin could indeed assist the folding process, but only in a small range of
the values of the attraction strength between the protein and the walls of the cage. Although,
such a model provides a possible explanation for the enhanced folding rate, it does not explain
the double-barrelled conformation of the chaperonin, nor its asynchronous activity. In our
simulations, we considered an alternative mechanism that did not rely on the partial unfold-
ing of the protein due to the interactions with the internal walls. Rather, in our simulations,
we considered the possibility of translocation of the protein through an hole that connects
the two barrels of the chaperonin complex. This mechanism turn out to be very efficient and
completely independent of the particular sequence or initial structure of the misfolded state.

We stress that all models studied in this thesis are highly simplified. However, with more
realistic models it would not (yet) be feasible to perform a systematic study of the phenomena
that we describe. Of course, it is essential to link the simulations to experiments. In the case of
the chaperonin complex (Chapter 7) this is fairly straightforward, as our model makes specific
and testable predictions about the mode of operation of the chaperonin. But also for the topic
discussed in the other chapters, it should be possible to make a link with experiments. This
will, however, require the use of models that are designed to describe a particular process (e.g.
a specific substrate-induced refolding process). We hope that this thesis will contribute to such
studies.
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9 Samevatting

In dit proefschrift worden numerieke simulaties gebruikt voor het bestuderen van de relatie
tussen verschillende functies van een eiwit die worden bepaald door de aminozuursequen-
tie. Hierbij is in het bijzonder gekeken naar conformatieveranderingen, eiwit-eiwitbinding
en chaperonne-afhankelijke eiwitvouwing. Wat deze ogenschijnlijk verschillende processen
gemeen hebben is een externe verstoring van het eiwit. De volgorde waarin de resultaten van
dit onderzoek gepresenteerd worden vertegenwoordigt de evolutie van een lokale verstoring
tot de globale hervouwing van het eiwit.

In de introductie en in hoofdstuk 2 beargumenteerden wij het rooster-heteropolymeermodel
voor de representatie van eiwitten. Het belangrijkste argument was dat een dergelijke simpele
beschrijving een krachtig theoretisch hulpmiddel levert voor het begrip van de fysica achter
intra- en intermoleculaire interacties van eiwitten en voor het begrip van het effect van deze in-
teracties op vouwing en het vormen van verbindingen. Verder is een overzicht gegeven van de
gemiddeld-veldargumenten die ten grondslag liggen aan onze numerieke eiwitontwerpstrate-
gie. Er wordt beschreven hoe "vouwbare" sequenties kunnen worden geselecteerd door het
uitvoeren van simulaties op een ontwerptemperatuur ónder de typische glasovergang van de
overeenkomstige willekeurige heteropolymeer.

In hoofdstuk 3 zijn de numerieke technieken beschreven die zijn gebruikt om het vrije-
energielandschap van het ontworpen roostereiwit te berekenen. De vrije energie is berekend
als functie van verschillende ordeparameters, karakteristiek voor de gevouwen toestand en
voor het bestudeerde proces. Het is gebleken dat het vrije-energielandschap van zo’n systeem
vaak grote rimpels laat zien. Om toestanden te samplen die door hoge vrije-energiebarrières
van elkaar gescheiden zijn, hebben wij een nieuw algoritme ontwikkeld (Virtual-move Parallel
Tempering). Dit algoritme verbetert de efficiëntie van de sampling aanzienlijk.

In hoofdstuk 4 is onze ontwerpstrategie gebruikt om conformatieveranderingen in éen
enkel eiwit te bestuderen. Hoe deze conformatieveranderingen plaatsvinden is nog steeds on-
derwerp van discussie. In het meest eenvoudige model wordt de analogie tussen moleculaire
en macroscopische machines benadrukt. In dit model wordt verondersteld dat de biologische
moleculen uit stijve subunits bestaan die met elkaar verbonden zijn door veren en scharnieren.
De gevouwen toestand is dan een gespannen toestand waarin sommige veren ingedrukt of uit-
gerekt zijn. Een conformatieverandering begint als een externe factor interacties verstoort die
essentieel zijn voor het behoud van de originele conformatie. De energie die is opgeslagen
in de veren wordt dan vrijgelaten. Een van de problemen met dit model is dat een plotseling
vrijlaten van opgebouwde spanning in een moleculaire keten over het algemeen ook onom-
keerbaar zal zijn. Deze onomkeerbaarheid verlaagt de efficiëntie van de moleculaire motor. In
ons model, daarentegen, is de overgang geïnduceerd door een verandering van de chemische

84



9 Samevatting

eigenschappen van enkele aminozuren. Door natuurlijke of kunstmatige (ontwerp-) evolutie is
het mogelijk het vrije-energieverschil tussen de natieve (gevouwen) toestand en een gegeven
tweede (doel-) toestand te bepalen. Bij bepaalde externe verstoringen kan de vrije energie van
dit tweede minimum verlaagd worden en zodoende de meest stabiele toestand worden. Het
systeem zal zich dan automatisch bewegen naar deze nieuwe evenwichtsconformatie. De rol
van thermische fluctuaties wordt belangrijk omdat ze het systeem met een aanzienlijk lager
energieverlies van de ene naar de andere structuur laten overgaan. Een dergelijk proces, her-
haaldelijk uitgevoerd, zou verantwoordelijk kunnen zijn voor de beweging van motoreiwitten
als myosine en dyneïne.

De tweede stap in ons onderzoek was het karakteriseren van de rol van een substraat op het
hervouwen van een eiwit. In het ontwerpen van eiwit-substraatinteracties zijn twee uitdagin-
gen. De eerste behelst het ontwerp van de specifieke bindingsplek op het oppervlak van een
eiwit dat aan het substraat kan binden. De tweede uitdaging is het ontwerp van hoe het eiwit
reageert op binding aan het substraat (bijvoorbeeld hervouwing). Alvorens te bestuderen hoe
de binding een conformatieverandering kan veroorzaken, hebben we ons gericht op het prob-
leem van specifieke binding. De vraag kan als volgt worden verwoord: “Hoe kunnen eiwitten
sterk aan slechts een paar substraten binden, maar zwak - of helemaal niet - aan een groot
aantal andere biomoleculen in een cel.“ De omgeving in een cel is vergeven van duizenden
verschillende soorten eiwitten. De kans op een toevallige ontmoeting is daarom erg hoog. In
hoofdstuk 5 hebben we deze vraag behandeld door te kijken naar de invloed van binding op
de vrije-energie bij het vouwen van verschillende eiwitten en substraten. Het resultaat van
de simulaties liet zien dat toevallige, niet-selectieve interacties inderdaad plaatsvinden tussen
eiwit en substraat, maar het verlies van entropie was te hoog om stabiele binding te bewerk-
stelligen, zelfs bij temperaturen gelijk aan een derde van de vouwtemperatuur. Dit geldt niet
voor ontworpen bindplekken op het eiwit: deze zijn wél in staat om sterk aan hun partner te
binden. Onze verklaring is dat er geen fundamenteel verschil tussen intra- en intermoleculaire
interacties is.Als het eiwit dus in contact is met het substraat kunnen beiden samen worden
gezien als een enkel eiwit. Om deze redenen gebruiken we voor het ontwerpen van specifieke
eiwit-substraatbinding hetzelfde algoritme als voor het vinden van een sequentie die in een
specifieke structuur vouwt.

In hoofstuk 6 behandelden we de vraag hoe een substraat de conformatie van een eiwit
kan beïnvloeden. Hiertoe berekenden we de vrije energie van het bindingsproces en keken we
naar de verandering in eiwitconformatie voor verschillende formaten van de bindingsplek. In
alle gevallen duidde de structuur van het vrije-energielandschap erop dat de eerste stap van
het bindingsproces een lokale ontvouwing van de in beginsel compacte conformatie met zich
meebracht om het contact met het substraat te vergroten. Vervolgens zou het ketenmolecuul
zich lokaal herschikken om de natieve (gevouwen) structuur te bereiken die overeenkomt met
de gebonden toestand. De elementen die we tot nu toe hebben verzameld, laten het vermogen
zien van modeleiwitten om gedeeltelijk te hervouwen in een nieuwe conformatie, om te binden
aan een klein aantal specifieke partners, en om te hervouwen als ze gebonden worden. Hierna
richtten we onze aandacht op de invloed van willekeurige domeinen op eiwit-eiwitinteracties.
Veel eiwitten bevatten delen die ongeordend en sterk beweeglijk zijn. Experimenteel is het
moeilijk om deze willekeurige domeinen te onderzoeken, aangezien ze feitelijk onzichtbaar
zijn in röntgenkristallografie. Uit het feit dat een domein een willekeurige conformatie heeft,
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volgt echter niet noodzakelijkerwijs dat het geen functie heeft. Om deze uitspraak te illus-
treren, ontwierpen we een roostereiwit dat niet zou kunnen vouwen in oplossing. Hierop
brachten we een substraat in dat het eiwit bij voorkeur in een bepaalde conformatie zou binden.
De simulaties wezen uit dat het eiwit vouwt als het gebonden wordt. Dit proces is omkeer-
baar, in de zin dat het eiwit terugkeert naar zijn ongeordende toestand als het loskomt. De
volgende vraag is of ons model ons toestaat een substraat te ontwerpen dat het eiwit helpt de
natieve toestand te vinden, zelfs nadat het losgekomen is. In de praktijk werken dergelijke
substraten als vouwkatalysatoren. Ze voorzien in een bindingsplek die, na een succesvolle
vouwgebeurtenis, vrij is om een nieuw doeleiwit te ontvangen. Dergelijke hervouwingsma-
chines komen voor in de natuur en zijn bekend als chaperonnes. Er zijn verschillende klassen
van zulke complexen. In het algemeen worden chaperonnes veronderstelt te functioneren als
ontvouwings-hervouwingsmachines: op deze manier verlagen ze de barrière die een eiwit
moet overkomen teneinde uit een lokaal vrije-energieminimum te ontsnappen om de natieve
toestand te bereiken.

In hoofdstuk 7 richtten we ons op de hervouwingseigenschappen van een fascinerende
subklasse van chaperonnes, de chaperonines ofwel chaperonnes die bestaan uit twee ton-
achtige structuren. Deze grote eiwitcomplexen hervouwen niet-natieve eiwitten. Aanvanke-
lijk worden de doeleiwitten opgesloten in de holte van een van de twee ton-achtige struc-
turen van het chaperoninecomplex. Wat er binnen de holte gebeurt is nog steeds een on-
derwerp van discussie. Eerdere modellen beschreven chaperonine als een holte met een
speciaal inwendig oppervlak dat een grote verscheidenheid aan eiwitten licht zou kunnen
binden, onafhankelijk van hun conformatie. Computersimulaties lieten zien dat een dergeli-
jke chaperonine inderdaad het vouwproces kan helpen, maar slechts in een klein bereik van
de waarde van de aantrekkingssterkte tussen het eiwit en de muren van de holte. Hoewel
zo’n model een mogelijke verklaring biedt voor het verhoogde vouwtempo, verklaart het
niet de dubbele-holteconformatie van de chaperonine, noch zijn asynchrone activeit. In onze
simulaties beschouwden we een alternatief mechanisme dat niet afhing van de gedeeltelijke
ontvouwing van het eiwit ten gevolge van interacties met de inwendige muren. In plaats daar-
van beschouwden we in onze simulaties de mogelijkheid van translocatie van het eiwit door
een gat dat de twee holtes van het chaperoninecomplex met elkaar verbindt. Dit mechanisme
bleek zeer efficiënt te zijn en volledig onafhankelijk van de specifieke volgorde of beginstruc-
tuur van de verkeerd gevouwen toestand.

We benadrukken dat alle bestudeerde modellen in dit proefschrift sterk zijn gesimpli-
ficeerd. Met meer realistische modellen is het echter (nog) niet haalbaar om een systematische
studie uit te voeren naar de verschijnselen die we beschrijven. Uiteraard is het noodzakelijk
om de simulaties aan experimenten te koppelen. In het geval van het chaperoninecomplex
(hoofdstuk 7), is dit redelijk simpel, aangezien ons model specifieke en testbare voorspellin-
gen doet over de werkingswijze van de chaperonine. Maar ook voor de onderwerpen die in de
andere hoofdstukken besproken zijn, zou het mogelijk moeten zijn een verband te leggen met
experimenten. Hiervoor zullen echter modellen nodig zijn die ontworpen zijn om een bepaald
proces te beschrijven (bijvoorbeeld een specifiek substraatgeïnduceerd hervouwingsproces).
We hopen dat dit proefschrift zal bijdragen aan zulke studies.
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